On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration

Parametric optimization problems are considered for serial robots with regenerative drive mechanisms. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use (ultra)capacitors for en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamic systems, measurement, and control measurement, and control, 2018-03, Vol.140 (3)
Hauptverfasser: Khalaf, Poya, Richter, Hanz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of dynamic systems, measurement, and control
container_volume 140
creator Khalaf, Poya
Richter, Hanz
description Parametric optimization problems are considered for serial robots with regenerative drive mechanisms. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use (ultra)capacitors for energy storage. Two different electrical interconnections are considered for the regenerative drives, a distributed and a star configuration. The latter allows for direct electric energy redistribution among joints, a novel idea shown in this paper to enable higher energy utilization efficiencies. Closed-form expressions are found for the optimal manipulator parameters (link masses, link lengths, etc.) and drive mechanism parameters (gear ratios, etc.) that maximize regenerative energy storage between any two times, given motion trajectories. A semi-active virtual control strategy previously proposed is used to achieve asymptotic tracking of trajectories. Optimal solutions are shown to be global and unique. In addition, closed-form expressions are provided for the maximum attainable energy. This theoretical maximum places limits on the amount of energy that can be recovered. The results also shed light on the comparative advantages of the star and distributed configurations. A numerical example with a double inverted pendulum and cart system is provided to demonstrate the results.
doi_str_mv 10.1115/1.4037653
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4037653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>474561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a284t-45404990ed4d02c07d0eda3e2063908dff549300b5a078b62e99788925b28b2d3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsHz15yFdz65ms3OUppq1BoqYrHkHSz7ZbdTUnSQ_31bm1PMzAPwzAIPRIYEULEKxlxYEUu2BUaEEFlpoDKazQAoDQDzvgtuotxB0AYE_kAbRcdnjXemuYFjxsfXZlNfWjxp28OqfZdxMnjpQmmdSnUa7zYp7qtf80pw8vgbePaiCsf8MpbnyL-qdMWTzoXNke8chvXu3_4Ht1Uponu4aJD9D2dfI3fs_li9jF-m2eGSp4yLjhwpcCVvAS6hqLsrWGOQs4UyLKqBFcMwAoDhbQ5dUoVUioqLJWWlmyIns-96-BjDK7S-1C3Jhw1AX26SBN9uahnn86sia3TO38IXT9N84KLnLA_YPNhjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Khalaf, Poya ; Richter, Hanz</creator><creatorcontrib>Khalaf, Poya ; Richter, Hanz</creatorcontrib><description>Parametric optimization problems are considered for serial robots with regenerative drive mechanisms. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use (ultra)capacitors for energy storage. Two different electrical interconnections are considered for the regenerative drives, a distributed and a star configuration. The latter allows for direct electric energy redistribution among joints, a novel idea shown in this paper to enable higher energy utilization efficiencies. Closed-form expressions are found for the optimal manipulator parameters (link masses, link lengths, etc.) and drive mechanism parameters (gear ratios, etc.) that maximize regenerative energy storage between any two times, given motion trajectories. A semi-active virtual control strategy previously proposed is used to achieve asymptotic tracking of trajectories. Optimal solutions are shown to be global and unique. In addition, closed-form expressions are provided for the maximum attainable energy. This theoretical maximum places limits on the amount of energy that can be recovered. The results also shed light on the comparative advantages of the star and distributed configurations. A numerical example with a double inverted pendulum and cart system is provided to demonstrate the results.</description><identifier>ISSN: 0022-0434</identifier><identifier>EISSN: 1528-9028</identifier><identifier>DOI: 10.1115/1.4037653</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of dynamic systems, measurement, and control, 2018-03, Vol.140 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a284t-45404990ed4d02c07d0eda3e2063908dff549300b5a078b62e99788925b28b2d3</citedby><cites>FETCH-LOGICAL-a284t-45404990ed4d02c07d0eda3e2063908dff549300b5a078b62e99788925b28b2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Khalaf, Poya</creatorcontrib><creatorcontrib>Richter, Hanz</creatorcontrib><title>On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration</title><title>Journal of dynamic systems, measurement, and control</title><addtitle>J. Dyn. Sys., Meas., Control</addtitle><description>Parametric optimization problems are considered for serial robots with regenerative drive mechanisms. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use (ultra)capacitors for energy storage. Two different electrical interconnections are considered for the regenerative drives, a distributed and a star configuration. The latter allows for direct electric energy redistribution among joints, a novel idea shown in this paper to enable higher energy utilization efficiencies. Closed-form expressions are found for the optimal manipulator parameters (link masses, link lengths, etc.) and drive mechanism parameters (gear ratios, etc.) that maximize regenerative energy storage between any two times, given motion trajectories. A semi-active virtual control strategy previously proposed is used to achieve asymptotic tracking of trajectories. Optimal solutions are shown to be global and unique. In addition, closed-form expressions are provided for the maximum attainable energy. This theoretical maximum places limits on the amount of energy that can be recovered. The results also shed light on the comparative advantages of the star and distributed configurations. A numerical example with a double inverted pendulum and cart system is provided to demonstrate the results.</description><issn>0022-0434</issn><issn>1528-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsHz15yFdz65ms3OUppq1BoqYrHkHSz7ZbdTUnSQ_31bm1PMzAPwzAIPRIYEULEKxlxYEUu2BUaEEFlpoDKazQAoDQDzvgtuotxB0AYE_kAbRcdnjXemuYFjxsfXZlNfWjxp28OqfZdxMnjpQmmdSnUa7zYp7qtf80pw8vgbePaiCsf8MpbnyL-qdMWTzoXNke8chvXu3_4Ht1Uponu4aJD9D2dfI3fs_li9jF-m2eGSp4yLjhwpcCVvAS6hqLsrWGOQs4UyLKqBFcMwAoDhbQ5dUoVUioqLJWWlmyIns-96-BjDK7S-1C3Jhw1AX26SBN9uahnn86sia3TO38IXT9N84KLnLA_YPNhjA</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Khalaf, Poya</creator><creator>Richter, Hanz</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration</title><author>Khalaf, Poya ; Richter, Hanz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a284t-45404990ed4d02c07d0eda3e2063908dff549300b5a078b62e99788925b28b2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalaf, Poya</creatorcontrib><creatorcontrib>Richter, Hanz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamic systems, measurement, and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalaf, Poya</au><au>Richter, Hanz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration</atitle><jtitle>Journal of dynamic systems, measurement, and control</jtitle><stitle>J. Dyn. Sys., Meas., Control</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>140</volume><issue>3</issue><issn>0022-0434</issn><eissn>1528-9028</eissn><abstract>Parametric optimization problems are considered for serial robots with regenerative drive mechanisms. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use (ultra)capacitors for energy storage. Two different electrical interconnections are considered for the regenerative drives, a distributed and a star configuration. The latter allows for direct electric energy redistribution among joints, a novel idea shown in this paper to enable higher energy utilization efficiencies. Closed-form expressions are found for the optimal manipulator parameters (link masses, link lengths, etc.) and drive mechanism parameters (gear ratios, etc.) that maximize regenerative energy storage between any two times, given motion trajectories. A semi-active virtual control strategy previously proposed is used to achieve asymptotic tracking of trajectories. Optimal solutions are shown to be global and unique. In addition, closed-form expressions are provided for the maximum attainable energy. This theoretical maximum places limits on the amount of energy that can be recovered. The results also shed light on the comparative advantages of the star and distributed configurations. A numerical example with a double inverted pendulum and cart system is provided to demonstrate the results.</abstract><pub>ASME</pub><doi>10.1115/1.4037653</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0434
ispartof Journal of dynamic systems, measurement, and control, 2018-03, Vol.140 (3)
issn 0022-0434
1528-9028
language eng
recordid cdi_crossref_primary_10_1115_1_4037653
source ASME Transactions Journals (Current); Alma/SFX Local Collection
title On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Global,%20Closed-Form%20Solutions%20to%20Parametric%20Optimization%20Problems%20for%20Robots%20With%20Energy%20Regeneration&rft.jtitle=Journal%20of%20dynamic%20systems,%20measurement,%20and%20control&rft.au=Khalaf,%20Poya&rft.date=2018-03-01&rft.volume=140&rft.issue=3&rft.issn=0022-0434&rft.eissn=1528-9028&rft_id=info:doi/10.1115/1.4037653&rft_dat=%3Casme_cross%3E474561%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true