Optimal Generation Maintenance Schedule for Bundled Wind–Thermal Generation System
Bundled wind–thermal generation system (BWTGS) is an effective way to utilize remote large–scale wind power. The optimal generation maintenance schedule (GMS) for BWTGS is not only helpful to improve the system reliability level but also useful to enhance the system economic efficiency and extend th...
Gespeichert in:
Veröffentlicht in: | Journal of energy resources technology 2018-01, Vol.140 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of energy resources technology |
container_volume | 140 |
creator | Ma, Yinghao Xie, Kaigui Dong, Jizhe Tai, Heng–Ming Hu, Bo |
description | Bundled wind–thermal generation system (BWTGS) is an effective way to utilize remote large–scale wind power. The optimal generation maintenance schedule (GMS) for BWTGS is not only helpful to improve the system reliability level but also useful to enhance the system economic efficiency and extend the lifetime of components. This paper presents a model to optimize the GMS for BWTGS. The probabilistic production simulation technique is employed to calculate the system costs, and a sequential probabilistic method is utilized to capture the sequential and stochastic nature of wind power. A hybrid optimization algorithm (HOA) based on the simulated annealing (SA) and multipopulation parallel genetic algorithm (GA) is developed to solve the proposed model. Case studies demonstrate the effectiveness of this proposed model. Effects of the reliability deterioration of thermal generating units (TGUs) and the pattern of BWTGS transmission power are also investigated. |
doi_str_mv | 10.1115/1.4037536 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4037536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>384962</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-146d02b9495d9754c169e3076ab0ef695ab9a13f4193f6810bd16af5763138c63</originalsourceid><addsrcrecordid>eNpdUL1OwzAYtBBIlMLAzJKVIcVf_BN7hAoKUlGHFjFaTvxZTZU6lZ0O3XgH3pAnIaidmG64H90dIbdAJwAgHmDCKSsFk2dkBKJQudKan5MRBS1yWjJ1Sa5S2lAKoHgxIqvFrm-2ts1mGDDavulC9m6b0GOwocZsWa_R7VvMfBezp31wLbrsswnu5-t7tcb4z7o8pB631-TC2zbhzQnH5OPleTV9zeeL2dv0cZ5bRss-By4dLSrNtXC6FLwGqXFgpK0oeqmFrbQF5jlo5qUCWjmQ1otSMmCqlmxM7o-5dexSiujNLg5j4sEANX93GDCnOwbt3VFr0xbNptvHMFQzTHEtC_YL4hVbcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Generation Maintenance Schedule for Bundled Wind–Thermal Generation System</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Ma, Yinghao ; Xie, Kaigui ; Dong, Jizhe ; Tai, Heng–Ming ; Hu, Bo</creator><creatorcontrib>Ma, Yinghao ; Xie, Kaigui ; Dong, Jizhe ; Tai, Heng–Ming ; Hu, Bo</creatorcontrib><description>Bundled wind–thermal generation system (BWTGS) is an effective way to utilize remote large–scale wind power. The optimal generation maintenance schedule (GMS) for BWTGS is not only helpful to improve the system reliability level but also useful to enhance the system economic efficiency and extend the lifetime of components. This paper presents a model to optimize the GMS for BWTGS. The probabilistic production simulation technique is employed to calculate the system costs, and a sequential probabilistic method is utilized to capture the sequential and stochastic nature of wind power. A hybrid optimization algorithm (HOA) based on the simulated annealing (SA) and multipopulation parallel genetic algorithm (GA) is developed to solve the proposed model. Case studies demonstrate the effectiveness of this proposed model. Effects of the reliability deterioration of thermal generating units (TGUs) and the pattern of BWTGS transmission power are also investigated.</description><identifier>ISSN: 0195-0738</identifier><identifier>EISSN: 1528-8994</identifier><identifier>DOI: 10.1115/1.4037536</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of energy resources technology, 2018-01, Vol.140 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-146d02b9495d9754c169e3076ab0ef695ab9a13f4193f6810bd16af5763138c63</citedby><cites>FETCH-LOGICAL-a307t-146d02b9495d9754c169e3076ab0ef695ab9a13f4193f6810bd16af5763138c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids></links><search><creatorcontrib>Ma, Yinghao</creatorcontrib><creatorcontrib>Xie, Kaigui</creatorcontrib><creatorcontrib>Dong, Jizhe</creatorcontrib><creatorcontrib>Tai, Heng–Ming</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><title>Optimal Generation Maintenance Schedule for Bundled Wind–Thermal Generation System</title><title>Journal of energy resources technology</title><addtitle>J. Energy Resour. Technol</addtitle><description>Bundled wind–thermal generation system (BWTGS) is an effective way to utilize remote large–scale wind power. The optimal generation maintenance schedule (GMS) for BWTGS is not only helpful to improve the system reliability level but also useful to enhance the system economic efficiency and extend the lifetime of components. This paper presents a model to optimize the GMS for BWTGS. The probabilistic production simulation technique is employed to calculate the system costs, and a sequential probabilistic method is utilized to capture the sequential and stochastic nature of wind power. A hybrid optimization algorithm (HOA) based on the simulated annealing (SA) and multipopulation parallel genetic algorithm (GA) is developed to solve the proposed model. Case studies demonstrate the effectiveness of this proposed model. Effects of the reliability deterioration of thermal generating units (TGUs) and the pattern of BWTGS transmission power are also investigated.</description><issn>0195-0738</issn><issn>1528-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdUL1OwzAYtBBIlMLAzJKVIcVf_BN7hAoKUlGHFjFaTvxZTZU6lZ0O3XgH3pAnIaidmG64H90dIbdAJwAgHmDCKSsFk2dkBKJQudKan5MRBS1yWjJ1Sa5S2lAKoHgxIqvFrm-2ts1mGDDavulC9m6b0GOwocZsWa_R7VvMfBezp31wLbrsswnu5-t7tcb4z7o8pB631-TC2zbhzQnH5OPleTV9zeeL2dv0cZ5bRss-By4dLSrNtXC6FLwGqXFgpK0oeqmFrbQF5jlo5qUCWjmQ1otSMmCqlmxM7o-5dexSiujNLg5j4sEANX93GDCnOwbt3VFr0xbNptvHMFQzTHEtC_YL4hVbcg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ma, Yinghao</creator><creator>Xie, Kaigui</creator><creator>Dong, Jizhe</creator><creator>Tai, Heng–Ming</creator><creator>Hu, Bo</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>Optimal Generation Maintenance Schedule for Bundled Wind–Thermal Generation System</title><author>Ma, Yinghao ; Xie, Kaigui ; Dong, Jizhe ; Tai, Heng–Ming ; Hu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-146d02b9495d9754c169e3076ab0ef695ab9a13f4193f6810bd16af5763138c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yinghao</creatorcontrib><creatorcontrib>Xie, Kaigui</creatorcontrib><creatorcontrib>Dong, Jizhe</creatorcontrib><creatorcontrib>Tai, Heng–Ming</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of energy resources technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yinghao</au><au>Xie, Kaigui</au><au>Dong, Jizhe</au><au>Tai, Heng–Ming</au><au>Hu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Generation Maintenance Schedule for Bundled Wind–Thermal Generation System</atitle><jtitle>Journal of energy resources technology</jtitle><stitle>J. Energy Resour. Technol</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>140</volume><issue>1</issue><issn>0195-0738</issn><eissn>1528-8994</eissn><abstract>Bundled wind–thermal generation system (BWTGS) is an effective way to utilize remote large–scale wind power. The optimal generation maintenance schedule (GMS) for BWTGS is not only helpful to improve the system reliability level but also useful to enhance the system economic efficiency and extend the lifetime of components. This paper presents a model to optimize the GMS for BWTGS. The probabilistic production simulation technique is employed to calculate the system costs, and a sequential probabilistic method is utilized to capture the sequential and stochastic nature of wind power. A hybrid optimization algorithm (HOA) based on the simulated annealing (SA) and multipopulation parallel genetic algorithm (GA) is developed to solve the proposed model. Case studies demonstrate the effectiveness of this proposed model. Effects of the reliability deterioration of thermal generating units (TGUs) and the pattern of BWTGS transmission power are also investigated.</abstract><pub>ASME</pub><doi>10.1115/1.4037536</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-0738 |
ispartof | Journal of energy resources technology, 2018-01, Vol.140 (1) |
issn | 0195-0738 1528-8994 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4037536 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
title | Optimal Generation Maintenance Schedule for Bundled Wind–Thermal Generation System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Generation%20Maintenance%20Schedule%20for%20Bundled%20Wind%E2%80%93Thermal%20Generation%20System&rft.jtitle=Journal%20of%20energy%20resources%20technology&rft.au=Ma,%20Yinghao&rft.date=2018-01-01&rft.volume=140&rft.issue=1&rft.issn=0195-0738&rft.eissn=1528-8994&rft_id=info:doi/10.1115/1.4037536&rft_dat=%3Casme_cross%3E384962%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |