A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces

The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2017-12, Vol.139 (12)
1. Verfasser: Sucec, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of fluids engineering
container_volume 139
creator Sucec, James
description The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.
doi_str_mv 10.1115/1.4037523
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4037523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>371951</sourcerecordid><originalsourceid>FETCH-LOGICAL-a209t-186ad9e2537670b9110e2edb0986b9cea31bb8db148733e161f73548026c16493</originalsourceid><addsrcrecordid>eNotkEtrAjEURkNpodZ20XU32XYx9t5kHslSpA-LRVAL3YVk5o4PoiPJjMV_X4uuvs3h43AYe0QYIGL2goMUZJEJecV6mAmVaMCfa9YD0CoRAsQtu4txA4BSpqrHPod8Rt626wP5I5-vt3tPfLxraRms51_UrpqK103giy64ztOu5W---eXTAwU-a7rlis-7UNuS4j27qa2P9HDZPvt-e12MPpLJ9H08Gk4SK0C3CarcVppEJou8AKcRgQRV7iSYO12SleicqhymqpCSMMe6kFmqQOQl5qmWffZ8_i1DE2Og2uzDemvD0SCY_wgGzSXCiX06szZuyWyaLuxOakYWqDOUf4nVVic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces</title><source>ASME Transactions Journals</source><source>Alma/SFX Local Collection</source><creator>Sucec, James</creator><creatorcontrib>Sucec, James</creatorcontrib><description>The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.4037523</identifier><language>eng</language><publisher>ASME</publisher><subject>Fundamental Issues and Canonical Flows</subject><ispartof>Journal of fluids engineering, 2017-12, Vol.139 (12)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a209t-186ad9e2537670b9110e2edb0986b9cea31bb8db148733e161f73548026c16493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,38525</link.rule.ids></links><search><creatorcontrib>Sucec, James</creatorcontrib><title>A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.</description><subject>Fundamental Issues and Canonical Flows</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkEtrAjEURkNpodZ20XU32XYx9t5kHslSpA-LRVAL3YVk5o4PoiPJjMV_X4uuvs3h43AYe0QYIGL2goMUZJEJecV6mAmVaMCfa9YD0CoRAsQtu4txA4BSpqrHPod8Rt626wP5I5-vt3tPfLxraRms51_UrpqK103giy64ztOu5W---eXTAwU-a7rlis-7UNuS4j27qa2P9HDZPvt-e12MPpLJ9H08Gk4SK0C3CarcVppEJou8AKcRgQRV7iSYO12SleicqhymqpCSMMe6kFmqQOQl5qmWffZ8_i1DE2Og2uzDemvD0SCY_wgGzSXCiX06szZuyWyaLuxOakYWqDOUf4nVVic</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Sucec, James</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces</title><author>Sucec, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a209t-186ad9e2537670b9110e2edb0986b9cea31bb8db148733e161f73548026c16493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fundamental Issues and Canonical Flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sucec, James</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sucec, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>139</volume><issue>12</issue><issn>0098-2202</issn><eissn>1528-901X</eissn><abstract>The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.</abstract><pub>ASME</pub><doi>10.1115/1.4037523</doi></addata></record>
fulltext fulltext
identifier ISSN: 0098-2202
ispartof Journal of fluids engineering, 2017-12, Vol.139 (12)
issn 0098-2202
1528-901X
language eng
recordid cdi_crossref_primary_10_1115_1_4037523
source ASME Transactions Journals; Alma/SFX Local Collection
subjects Fundamental Issues and Canonical Flows
title A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Relatively%20Simple%20Integral%20Method%20for%20Turbulent%20Flow%20Over%20Rough%20Surfaces&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Sucec,%20James&rft.date=2017-12-01&rft.volume=139&rft.issue=12&rft.issn=0098-2202&rft.eissn=1528-901X&rft_id=info:doi/10.1115/1.4037523&rft_dat=%3Casme_cross%3E371951%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true