A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces
The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves...
Gespeichert in:
Veröffentlicht in: | Journal of fluids engineering 2017-12, Vol.139 (12) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of fluids engineering |
container_volume | 139 |
creator | Sucec, James |
description | The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept. |
doi_str_mv | 10.1115/1.4037523 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4037523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>371951</sourcerecordid><originalsourceid>FETCH-LOGICAL-a209t-186ad9e2537670b9110e2edb0986b9cea31bb8db148733e161f73548026c16493</originalsourceid><addsrcrecordid>eNotkEtrAjEURkNpodZ20XU32XYx9t5kHslSpA-LRVAL3YVk5o4PoiPJjMV_X4uuvs3h43AYe0QYIGL2goMUZJEJecV6mAmVaMCfa9YD0CoRAsQtu4txA4BSpqrHPod8Rt626wP5I5-vt3tPfLxraRms51_UrpqK103giy64ztOu5W---eXTAwU-a7rlis-7UNuS4j27qa2P9HDZPvt-e12MPpLJ9H08Gk4SK0C3CarcVppEJou8AKcRgQRV7iSYO12SleicqhymqpCSMMe6kFmqQOQl5qmWffZ8_i1DE2Og2uzDemvD0SCY_wgGzSXCiX06szZuyWyaLuxOakYWqDOUf4nVVic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces</title><source>ASME Transactions Journals</source><source>Alma/SFX Local Collection</source><creator>Sucec, James</creator><creatorcontrib>Sucec, James</creatorcontrib><description>The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.4037523</identifier><language>eng</language><publisher>ASME</publisher><subject>Fundamental Issues and Canonical Flows</subject><ispartof>Journal of fluids engineering, 2017-12, Vol.139 (12)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a209t-186ad9e2537670b9110e2edb0986b9cea31bb8db148733e161f73548026c16493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,38525</link.rule.ids></links><search><creatorcontrib>Sucec, James</creatorcontrib><title>A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.</description><subject>Fundamental Issues and Canonical Flows</subject><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkEtrAjEURkNpodZ20XU32XYx9t5kHslSpA-LRVAL3YVk5o4PoiPJjMV_X4uuvs3h43AYe0QYIGL2goMUZJEJecV6mAmVaMCfa9YD0CoRAsQtu4txA4BSpqrHPod8Rt626wP5I5-vt3tPfLxraRms51_UrpqK103giy64ztOu5W---eXTAwU-a7rlis-7UNuS4j27qa2P9HDZPvt-e12MPpLJ9H08Gk4SK0C3CarcVppEJou8AKcRgQRV7iSYO12SleicqhymqpCSMMe6kFmqQOQl5qmWffZ8_i1DE2Og2uzDemvD0SCY_wgGzSXCiX06szZuyWyaLuxOakYWqDOUf4nVVic</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Sucec, James</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces</title><author>Sucec, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a209t-186ad9e2537670b9110e2edb0986b9cea31bb8db148733e161f73548026c16493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fundamental Issues and Canonical Flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sucec, James</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sucec, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>139</volume><issue>12</issue><issn>0098-2202</issn><eissn>1528-901X</eissn><abstract>The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.</abstract><pub>ASME</pub><doi>10.1115/1.4037523</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-2202 |
ispartof | Journal of fluids engineering, 2017-12, Vol.139 (12) |
issn | 0098-2202 1528-901X |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4037523 |
source | ASME Transactions Journals; Alma/SFX Local Collection |
subjects | Fundamental Issues and Canonical Flows |
title | A Relatively Simple Integral Method for Turbulent Flow Over Rough Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Relatively%20Simple%20Integral%20Method%20for%20Turbulent%20Flow%20Over%20Rough%20Surfaces&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Sucec,%20James&rft.date=2017-12-01&rft.volume=139&rft.issue=12&rft.issn=0098-2202&rft.eissn=1528-901X&rft_id=info:doi/10.1115/1.4037523&rft_dat=%3Casme_cross%3E371951%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |