Sensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations

This paper examines various sensitivity analysis methods which can be used to determine the relative importance of input epistemic uncertainties on the uncertainty quantified performance estimate. The results from such analyses would then indicate which input uncertainties would merit additional stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of verification, validation, and uncertainty quantification validation, and uncertainty quantification, 2017-06, Vol.2 (2)
Hauptverfasser: Hale, Lawrence, Patil, Mayuresh, Roy, Christopher J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of verification, validation, and uncertainty quantification
container_volume 2
creator Hale, Lawrence
Patil, Mayuresh
Roy, Christopher J
description This paper examines various sensitivity analysis methods which can be used to determine the relative importance of input epistemic uncertainties on the uncertainty quantified performance estimate. The results from such analyses would then indicate which input uncertainties would merit additional study. The following existing sensitivity analysis methods are examined and described: local sensitivity analysis by finite difference, scatter plot analysis, variance-based analysis, and p-box-based analysis. As none of these methods are ideally suited for analysis of dynamic systems with epistemic uncertainty, an alternate method is proposed. This method uses aspects of both local sensitivity analysis and p-box-based analysis to provide improved computational speed while removing dependence on the assumed nominal model parameters.
doi_str_mv 10.1115/1.4037004
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4037004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>447647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a124t-a566efecb8e3385407d74343aa3a5f392d7bf70ca58081a9f3e1252fb778da113</originalsourceid><addsrcrecordid>eNplkEFLAzEUhIMoWGoPnr3k6mFrXpLdbI9Sqi0UFWrP4XU3kZRutiSp0n9vSosXT_OY-XgMQ8g9sDEAlE8wlkwoxuQVGXChVMGhqq7_7rK-JaMYt4wxqAAkhwH5WRkfXXLfLh1pb-nC7w-JzvYuJtO5hq59Y0JC50-xp2-9b00yoXM-Ezn_MMH2ocOM0Vl2Okwm0nV0_us_vHLdYYfJ9T7ekRuLu2hGFx2S9cvsczovlu-vi-nzskDgMhVYVpWxptnURoi6lEy1SgopEAWWVkx4qzZWsQbLmtWAEysM8JLbjVJ1iwBiSB7Pf5vQxxiM1fuQS4ajBqZPo2nQl9Ey-3BmMXZGb_tD8LmallJVUolfcN5qkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations</title><source>ASME Transactions Journals (Current)</source><creator>Hale, Lawrence ; Patil, Mayuresh ; Roy, Christopher J</creator><creatorcontrib>Hale, Lawrence ; Patil, Mayuresh ; Roy, Christopher J</creatorcontrib><description>This paper examines various sensitivity analysis methods which can be used to determine the relative importance of input epistemic uncertainties on the uncertainty quantified performance estimate. The results from such analyses would then indicate which input uncertainties would merit additional study. The following existing sensitivity analysis methods are examined and described: local sensitivity analysis by finite difference, scatter plot analysis, variance-based analysis, and p-box-based analysis. As none of these methods are ideally suited for analysis of dynamic systems with epistemic uncertainty, an alternate method is proposed. This method uses aspects of both local sensitivity analysis and p-box-based analysis to provide improved computational speed while removing dependence on the assumed nominal model parameters.</description><identifier>ISSN: 2377-2158</identifier><identifier>EISSN: 2377-2166</identifier><identifier>DOI: 10.1115/1.4037004</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of verification, validation, and uncertainty quantification, 2017-06, Vol.2 (2)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a124t-a566efecb8e3385407d74343aa3a5f392d7bf70ca58081a9f3e1252fb778da113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Hale, Lawrence</creatorcontrib><creatorcontrib>Patil, Mayuresh</creatorcontrib><creatorcontrib>Roy, Christopher J</creatorcontrib><title>Sensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations</title><title>Journal of verification, validation, and uncertainty quantification</title><addtitle>J. Verif. Valid. Uncert</addtitle><description>This paper examines various sensitivity analysis methods which can be used to determine the relative importance of input epistemic uncertainties on the uncertainty quantified performance estimate. The results from such analyses would then indicate which input uncertainties would merit additional study. The following existing sensitivity analysis methods are examined and described: local sensitivity analysis by finite difference, scatter plot analysis, variance-based analysis, and p-box-based analysis. As none of these methods are ideally suited for analysis of dynamic systems with epistemic uncertainty, an alternate method is proposed. This method uses aspects of both local sensitivity analysis and p-box-based analysis to provide improved computational speed while removing dependence on the assumed nominal model parameters.</description><issn>2377-2158</issn><issn>2377-2166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNplkEFLAzEUhIMoWGoPnr3k6mFrXpLdbI9Sqi0UFWrP4XU3kZRutiSp0n9vSosXT_OY-XgMQ8g9sDEAlE8wlkwoxuQVGXChVMGhqq7_7rK-JaMYt4wxqAAkhwH5WRkfXXLfLh1pb-nC7w-JzvYuJtO5hq59Y0JC50-xp2-9b00yoXM-Ezn_MMH2ocOM0Vl2Okwm0nV0_us_vHLdYYfJ9T7ekRuLu2hGFx2S9cvsczovlu-vi-nzskDgMhVYVpWxptnURoi6lEy1SgopEAWWVkx4qzZWsQbLmtWAEysM8JLbjVJ1iwBiSB7Pf5vQxxiM1fuQS4ajBqZPo2nQl9Ey-3BmMXZGb_tD8LmallJVUolfcN5qkw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Hale, Lawrence</creator><creator>Patil, Mayuresh</creator><creator>Roy, Christopher J</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Sensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations</title><author>Hale, Lawrence ; Patil, Mayuresh ; Roy, Christopher J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a124t-a566efecb8e3385407d74343aa3a5f392d7bf70ca58081a9f3e1252fb778da113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hale, Lawrence</creatorcontrib><creatorcontrib>Patil, Mayuresh</creatorcontrib><creatorcontrib>Roy, Christopher J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of verification, validation, and uncertainty quantification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hale, Lawrence</au><au>Patil, Mayuresh</au><au>Roy, Christopher J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations</atitle><jtitle>Journal of verification, validation, and uncertainty quantification</jtitle><stitle>J. Verif. Valid. Uncert</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>2</volume><issue>2</issue><issn>2377-2158</issn><eissn>2377-2166</eissn><abstract>This paper examines various sensitivity analysis methods which can be used to determine the relative importance of input epistemic uncertainties on the uncertainty quantified performance estimate. The results from such analyses would then indicate which input uncertainties would merit additional study. The following existing sensitivity analysis methods are examined and described: local sensitivity analysis by finite difference, scatter plot analysis, variance-based analysis, and p-box-based analysis. As none of these methods are ideally suited for analysis of dynamic systems with epistemic uncertainty, an alternate method is proposed. This method uses aspects of both local sensitivity analysis and p-box-based analysis to provide improved computational speed while removing dependence on the assumed nominal model parameters.</abstract><pub>ASME</pub><doi>10.1115/1.4037004</doi></addata></record>
fulltext fulltext
identifier ISSN: 2377-2158
ispartof Journal of verification, validation, and uncertainty quantification, 2017-06, Vol.2 (2)
issn 2377-2158
2377-2166
language eng
recordid cdi_crossref_primary_10_1115_1_4037004
source ASME Transactions Journals (Current)
title Sensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20Input%20Epistemic%20Uncertainty%20on%20Nondeterministic%20Performance%20Estimates%20Using%20Nondeterministic%20Simulations&rft.jtitle=Journal%20of%20verification,%20validation,%20and%20uncertainty%20quantification&rft.au=Hale,%20Lawrence&rft.date=2017-06-01&rft.volume=2&rft.issue=2&rft.issn=2377-2158&rft.eissn=2377-2166&rft_id=info:doi/10.1115/1.4037004&rft_dat=%3Casme_cross%3E447647%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true