Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector

In this research, an inclined three-dimensional nanofluid-based tube-on-sheet flat plate solar collector (FPSC) working under laminar conjugated mixed convection heat transfer is numerically modeled. The working fluid is selected to be alumina/water (Al2O3/water) and results from heat transfer, entr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solar energy engineering 2017-08, Vol.139 (4)
Hauptverfasser: Charjouei Moghadam, Mohammad, Edalatpour, Mojtaba, Solano, Juan P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of solar energy engineering
container_volume 139
creator Charjouei Moghadam, Mohammad
Edalatpour, Mojtaba
Solano, Juan P
description In this research, an inclined three-dimensional nanofluid-based tube-on-sheet flat plate solar collector (FPSC) working under laminar conjugated mixed convection heat transfer is numerically modeled. The working fluid is selected to be alumina/water (Al2O3/water) and results from heat transfer, entropy generation, and pressure drop points of view are being presented for various prominent parameters, namely volume fraction, nanoparticles diameter, Richardson and Reynolds numbers. According to the simulations, Nusselt number decreases as the Richardson number or volume fraction of the nanofluid rises, whereas heat transfer coefficient experiences an augmentation when volume concentration and the Richardson number surge. Also, data reveal that total entropy generation rate of the system declines when the alumina/water nanofluid is utilized inside the system as the volume fraction or the Richardson number increases. Additionally, it is found that increasing the nanoparticle volume concentration or the Richardson number diminishes the pressure drop considerably, whereas friction factor substantially proliferates as the Richardson number or volume fraction rises. Eventually, employment of larger alumina nanoparticles mean diameter eventuates in providing lower Nusselt number and apparent friction factor while it increases the pressure drop and heat transfer coefficient. Finally, comparing the efficiency of the presented FPSC design with those available in the literature shows a superior performance by the present design with its maximum occurring at 2 vol %.
doi_str_mv 10.1115/1.4036854
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4036854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>379753</sourcerecordid><originalsourceid>FETCH-LOGICAL-a290t-7b213525ca830c513ae4e478f106a16e97be932bf7c5cc452e9c27f2a428054e3</originalsourceid><addsrcrecordid>eNotUE1PwkAQ3RhNRPTg2cteTSjsR7cfR0L4MEE0AcOxmS5TKSm7ZNuq_Cr_ootwmcnkvXlv5hHyyFmfc64GvB8yGSUqvCIdrkQSJGkSXZMO42kaRELyW3JX1zvGuJRKdMjvot2jKzVUdNm0myO1ho6s2bWf0OCGzmFfGnD0tfzxkwe-UDel59iCDqv2BA7WnunoAowtqrbc0Ellv3t0htDQlQNTF-h6FMyGjk3j7OFIp2jQwb_Mumy2paFAV22OgTXBcovYeAm__O4L0qWtvP_IVpV3tu6e3BRQ1fhw6V3yMRmvRrNg_jZ9GQ3nAYiUNUGcC-7_UxoSybTiEjDEME4KziLgEaZxjqkUeRFrpXWoBKZaxIWAUCRMhSi75Pmsq52ta4dFdnDlHtwx4yw7JZ3x7JK05z6duVDvMdvZ1hl_WibjNFZS_gE_43su</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Charjouei Moghadam, Mohammad ; Edalatpour, Mojtaba ; Solano, Juan P</creator><creatorcontrib>Charjouei Moghadam, Mohammad ; Edalatpour, Mojtaba ; Solano, Juan P</creatorcontrib><description>In this research, an inclined three-dimensional nanofluid-based tube-on-sheet flat plate solar collector (FPSC) working under laminar conjugated mixed convection heat transfer is numerically modeled. The working fluid is selected to be alumina/water (Al2O3/water) and results from heat transfer, entropy generation, and pressure drop points of view are being presented for various prominent parameters, namely volume fraction, nanoparticles diameter, Richardson and Reynolds numbers. According to the simulations, Nusselt number decreases as the Richardson number or volume fraction of the nanofluid rises, whereas heat transfer coefficient experiences an augmentation when volume concentration and the Richardson number surge. Also, data reveal that total entropy generation rate of the system declines when the alumina/water nanofluid is utilized inside the system as the volume fraction or the Richardson number increases. Additionally, it is found that increasing the nanoparticle volume concentration or the Richardson number diminishes the pressure drop considerably, whereas friction factor substantially proliferates as the Richardson number or volume fraction rises. Eventually, employment of larger alumina nanoparticles mean diameter eventuates in providing lower Nusselt number and apparent friction factor while it increases the pressure drop and heat transfer coefficient. Finally, comparing the efficiency of the presented FPSC design with those available in the literature shows a superior performance by the present design with its maximum occurring at 2 vol %.</description><identifier>ISSN: 0199-6231</identifier><identifier>EISSN: 1528-8986</identifier><identifier>DOI: 10.1115/1.4036854</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of solar energy engineering, 2017-08, Vol.139 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a290t-7b213525ca830c513ae4e478f106a16e97be932bf7c5cc452e9c27f2a428054e3</citedby><cites>FETCH-LOGICAL-a290t-7b213525ca830c513ae4e478f106a16e97be932bf7c5cc452e9c27f2a428054e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908,38503</link.rule.ids></links><search><creatorcontrib>Charjouei Moghadam, Mohammad</creatorcontrib><creatorcontrib>Edalatpour, Mojtaba</creatorcontrib><creatorcontrib>Solano, Juan P</creatorcontrib><title>Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector</title><title>Journal of solar energy engineering</title><addtitle>J. Sol. Energy Eng</addtitle><description>In this research, an inclined three-dimensional nanofluid-based tube-on-sheet flat plate solar collector (FPSC) working under laminar conjugated mixed convection heat transfer is numerically modeled. The working fluid is selected to be alumina/water (Al2O3/water) and results from heat transfer, entropy generation, and pressure drop points of view are being presented for various prominent parameters, namely volume fraction, nanoparticles diameter, Richardson and Reynolds numbers. According to the simulations, Nusselt number decreases as the Richardson number or volume fraction of the nanofluid rises, whereas heat transfer coefficient experiences an augmentation when volume concentration and the Richardson number surge. Also, data reveal that total entropy generation rate of the system declines when the alumina/water nanofluid is utilized inside the system as the volume fraction or the Richardson number increases. Additionally, it is found that increasing the nanoparticle volume concentration or the Richardson number diminishes the pressure drop considerably, whereas friction factor substantially proliferates as the Richardson number or volume fraction rises. Eventually, employment of larger alumina nanoparticles mean diameter eventuates in providing lower Nusselt number and apparent friction factor while it increases the pressure drop and heat transfer coefficient. Finally, comparing the efficiency of the presented FPSC design with those available in the literature shows a superior performance by the present design with its maximum occurring at 2 vol %.</description><issn>0199-6231</issn><issn>1528-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUE1PwkAQ3RhNRPTg2cteTSjsR7cfR0L4MEE0AcOxmS5TKSm7ZNuq_Cr_ootwmcnkvXlv5hHyyFmfc64GvB8yGSUqvCIdrkQSJGkSXZMO42kaRELyW3JX1zvGuJRKdMjvot2jKzVUdNm0myO1ho6s2bWf0OCGzmFfGnD0tfzxkwe-UDel59iCDqv2BA7WnunoAowtqrbc0Ellv3t0htDQlQNTF-h6FMyGjk3j7OFIp2jQwb_Mumy2paFAV22OgTXBcovYeAm__O4L0qWtvP_IVpV3tu6e3BRQ1fhw6V3yMRmvRrNg_jZ9GQ3nAYiUNUGcC-7_UxoSybTiEjDEME4KziLgEaZxjqkUeRFrpXWoBKZaxIWAUCRMhSi75Pmsq52ta4dFdnDlHtwx4yw7JZ3x7JK05z6duVDvMdvZ1hl_WibjNFZS_gE_43su</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Charjouei Moghadam, Mohammad</creator><creator>Edalatpour, Mojtaba</creator><creator>Solano, Juan P</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector</title><author>Charjouei Moghadam, Mohammad ; Edalatpour, Mojtaba ; Solano, Juan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a290t-7b213525ca830c513ae4e478f106a16e97be932bf7c5cc452e9c27f2a428054e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charjouei Moghadam, Mohammad</creatorcontrib><creatorcontrib>Edalatpour, Mojtaba</creatorcontrib><creatorcontrib>Solano, Juan P</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charjouei Moghadam, Mohammad</au><au>Edalatpour, Mojtaba</au><au>Solano, Juan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector</atitle><jtitle>Journal of solar energy engineering</jtitle><stitle>J. Sol. Energy Eng</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>139</volume><issue>4</issue><issn>0199-6231</issn><eissn>1528-8986</eissn><abstract>In this research, an inclined three-dimensional nanofluid-based tube-on-sheet flat plate solar collector (FPSC) working under laminar conjugated mixed convection heat transfer is numerically modeled. The working fluid is selected to be alumina/water (Al2O3/water) and results from heat transfer, entropy generation, and pressure drop points of view are being presented for various prominent parameters, namely volume fraction, nanoparticles diameter, Richardson and Reynolds numbers. According to the simulations, Nusselt number decreases as the Richardson number or volume fraction of the nanofluid rises, whereas heat transfer coefficient experiences an augmentation when volume concentration and the Richardson number surge. Also, data reveal that total entropy generation rate of the system declines when the alumina/water nanofluid is utilized inside the system as the volume fraction or the Richardson number increases. Additionally, it is found that increasing the nanoparticle volume concentration or the Richardson number diminishes the pressure drop considerably, whereas friction factor substantially proliferates as the Richardson number or volume fraction rises. Eventually, employment of larger alumina nanoparticles mean diameter eventuates in providing lower Nusselt number and apparent friction factor while it increases the pressure drop and heat transfer coefficient. Finally, comparing the efficiency of the presented FPSC design with those available in the literature shows a superior performance by the present design with its maximum occurring at 2 vol %.</abstract><pub>ASME</pub><doi>10.1115/1.4036854</doi></addata></record>
fulltext fulltext
identifier ISSN: 0199-6231
ispartof Journal of solar energy engineering, 2017-08, Vol.139 (4)
issn 0199-6231
1528-8986
language eng
recordid cdi_crossref_primary_10_1115_1_4036854
source ASME Transactions Journals (Current); Alma/SFX Local Collection
title Numerical Study on Conjugated Laminar Mixed Convection of Alumina/Water Nanofluid Flow, Heat Transfer, and Entropy Generation Within a Tube-on-Sheet Flat Plate Solar Collector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Study%20on%20Conjugated%20Laminar%20Mixed%20Convection%20of%20Alumina/Water%20Nanofluid%20Flow,%20Heat%20Transfer,%20and%20Entropy%20Generation%20Within%20a%20Tube-on-Sheet%20Flat%20Plate%20Solar%20Collector&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Charjouei%20Moghadam,%20Mohammad&rft.date=2017-08-01&rft.volume=139&rft.issue=4&rft.issn=0199-6231&rft.eissn=1528-8986&rft_id=info:doi/10.1115/1.4036854&rft_dat=%3Casme_cross%3E379753%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true