Fast Estimation of the Damage Equivalent Load in Blade Geometry Multidisciplinar Optimization

Designing blade geometry as a multidisciplinary optimization presents important challenges due to the increment in the number of design variables and computational cost of calculating the constraints and objective function. Blades have an important impact on loads because they capture the kinetic en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solar energy engineering 2017-08, Vol.139 (4)
Hauptverfasser: Durá, Fernando Echeverría, Gimenez, Fermín Mallor, Corretge, Javier Sanz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of solar energy engineering
container_volume 139
creator Durá, Fernando Echeverría
Gimenez, Fermín Mallor
Corretge, Javier Sanz
description Designing blade geometry as a multidisciplinary optimization presents important challenges due to the increment in the number of design variables and computational cost of calculating the constraints and objective function. Blades have an important impact on loads because they capture the kinetic energy in wind and transfer it to the rest of the wind turbine components. Thus, consideration of the fatigue response is necessary in the optimization problem. However, the calculation of the damage equivalent loads (DELs) implies time-consuming simulations that restrict the number of design variables due to the increment of the search space. This article proposes a frequency domain method to estimate the fatigue response, which produces an advantage in terms of computational cost. The method is based on wind turbine model linearization by means of an aero-elastic code and the subsequent calculation of a frequency response function (FRF), which serves to estimate the response of the wind turbine. The Dirlik method is then applied to infer the damage equivalent loads. This process, which is useful for variables that have a stochastic nature, provides rapid approximate prediction of the fatigue response. An alternative estimation is proposed for loads subjected to an important periodic component. The results show that the method is useful in the initial stages of design.
doi_str_mv 10.1115/1.4036636
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4036636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>379717</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-68c222c7563c4c023e23c4cb8f00363a83bb0f70f0a575eaeaae3f0d02ac7fe33</originalsourceid><addsrcrecordid>eNotkE1PAjEYhBujiYgePHvp1cNiP9h296gIaILhokfTvHTfasl-YFtI8Ne7CKeZw-TJzBByy9mIc54_8NGYSaWkOiMDnosiK8pCnZMB42WZKSH5JbmKcc0YlzIXA_I5g5joNCbfQPJdSztH0zfSZ2jgC-n0Z-t3UGOb6KKDivqWPtVQIZ1j12AKe_q2rZOvfLR-U_sWAl1uepb__addkwsHdcSbkw7Jx2z6PnnJFsv56-RxkYEYlylThRVCWJ0raceWCYniYFaFY_0YCYVcrZjTzDHIdY6AACgdq5gAqx1KOST3R64NXYwBndmEflDYG87M4RfDzemXPnt3zEJs0Ky7bWj7akbqUnMt_wAyIF8N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast Estimation of the Damage Equivalent Load in Blade Geometry Multidisciplinar Optimization</title><source>ASME Transactions Journals</source><source>Alma/SFX Local Collection</source><creator>Durá, Fernando Echeverría ; Gimenez, Fermín Mallor ; Corretge, Javier Sanz</creator><creatorcontrib>Durá, Fernando Echeverría ; Gimenez, Fermín Mallor ; Corretge, Javier Sanz</creatorcontrib><description>Designing blade geometry as a multidisciplinary optimization presents important challenges due to the increment in the number of design variables and computational cost of calculating the constraints and objective function. Blades have an important impact on loads because they capture the kinetic energy in wind and transfer it to the rest of the wind turbine components. Thus, consideration of the fatigue response is necessary in the optimization problem. However, the calculation of the damage equivalent loads (DELs) implies time-consuming simulations that restrict the number of design variables due to the increment of the search space. This article proposes a frequency domain method to estimate the fatigue response, which produces an advantage in terms of computational cost. The method is based on wind turbine model linearization by means of an aero-elastic code and the subsequent calculation of a frequency response function (FRF), which serves to estimate the response of the wind turbine. The Dirlik method is then applied to infer the damage equivalent loads. This process, which is useful for variables that have a stochastic nature, provides rapid approximate prediction of the fatigue response. An alternative estimation is proposed for loads subjected to an important periodic component. The results show that the method is useful in the initial stages of design.</description><identifier>ISSN: 0199-6231</identifier><identifier>EISSN: 1528-8986</identifier><identifier>DOI: 10.1115/1.4036636</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of solar energy engineering, 2017-08, Vol.139 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-68c222c7563c4c023e23c4cb8f00363a83bb0f70f0a575eaeaae3f0d02ac7fe33</citedby><cites>FETCH-LOGICAL-a249t-68c222c7563c4c023e23c4cb8f00363a83bb0f70f0a575eaeaae3f0d02ac7fe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916,38511</link.rule.ids></links><search><creatorcontrib>Durá, Fernando Echeverría</creatorcontrib><creatorcontrib>Gimenez, Fermín Mallor</creatorcontrib><creatorcontrib>Corretge, Javier Sanz</creatorcontrib><title>Fast Estimation of the Damage Equivalent Load in Blade Geometry Multidisciplinar Optimization</title><title>Journal of solar energy engineering</title><addtitle>J. Sol. Energy Eng</addtitle><description>Designing blade geometry as a multidisciplinary optimization presents important challenges due to the increment in the number of design variables and computational cost of calculating the constraints and objective function. Blades have an important impact on loads because they capture the kinetic energy in wind and transfer it to the rest of the wind turbine components. Thus, consideration of the fatigue response is necessary in the optimization problem. However, the calculation of the damage equivalent loads (DELs) implies time-consuming simulations that restrict the number of design variables due to the increment of the search space. This article proposes a frequency domain method to estimate the fatigue response, which produces an advantage in terms of computational cost. The method is based on wind turbine model linearization by means of an aero-elastic code and the subsequent calculation of a frequency response function (FRF), which serves to estimate the response of the wind turbine. The Dirlik method is then applied to infer the damage equivalent loads. This process, which is useful for variables that have a stochastic nature, provides rapid approximate prediction of the fatigue response. An alternative estimation is proposed for loads subjected to an important periodic component. The results show that the method is useful in the initial stages of design.</description><issn>0199-6231</issn><issn>1528-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1PAjEYhBujiYgePHvp1cNiP9h296gIaILhokfTvHTfasl-YFtI8Ne7CKeZw-TJzBByy9mIc54_8NGYSaWkOiMDnosiK8pCnZMB42WZKSH5JbmKcc0YlzIXA_I5g5joNCbfQPJdSztH0zfSZ2jgC-n0Z-t3UGOb6KKDivqWPtVQIZ1j12AKe_q2rZOvfLR-U_sWAl1uepb__addkwsHdcSbkw7Jx2z6PnnJFsv56-RxkYEYlylThRVCWJ0raceWCYniYFaFY_0YCYVcrZjTzDHIdY6AACgdq5gAqx1KOST3R64NXYwBndmEflDYG87M4RfDzemXPnt3zEJs0Ky7bWj7akbqUnMt_wAyIF8N</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Durá, Fernando Echeverría</creator><creator>Gimenez, Fermín Mallor</creator><creator>Corretge, Javier Sanz</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Fast Estimation of the Damage Equivalent Load in Blade Geometry Multidisciplinar Optimization</title><author>Durá, Fernando Echeverría ; Gimenez, Fermín Mallor ; Corretge, Javier Sanz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-68c222c7563c4c023e23c4cb8f00363a83bb0f70f0a575eaeaae3f0d02ac7fe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durá, Fernando Echeverría</creatorcontrib><creatorcontrib>Gimenez, Fermín Mallor</creatorcontrib><creatorcontrib>Corretge, Javier Sanz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durá, Fernando Echeverría</au><au>Gimenez, Fermín Mallor</au><au>Corretge, Javier Sanz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Estimation of the Damage Equivalent Load in Blade Geometry Multidisciplinar Optimization</atitle><jtitle>Journal of solar energy engineering</jtitle><stitle>J. Sol. Energy Eng</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>139</volume><issue>4</issue><issn>0199-6231</issn><eissn>1528-8986</eissn><abstract>Designing blade geometry as a multidisciplinary optimization presents important challenges due to the increment in the number of design variables and computational cost of calculating the constraints and objective function. Blades have an important impact on loads because they capture the kinetic energy in wind and transfer it to the rest of the wind turbine components. Thus, consideration of the fatigue response is necessary in the optimization problem. However, the calculation of the damage equivalent loads (DELs) implies time-consuming simulations that restrict the number of design variables due to the increment of the search space. This article proposes a frequency domain method to estimate the fatigue response, which produces an advantage in terms of computational cost. The method is based on wind turbine model linearization by means of an aero-elastic code and the subsequent calculation of a frequency response function (FRF), which serves to estimate the response of the wind turbine. The Dirlik method is then applied to infer the damage equivalent loads. This process, which is useful for variables that have a stochastic nature, provides rapid approximate prediction of the fatigue response. An alternative estimation is proposed for loads subjected to an important periodic component. The results show that the method is useful in the initial stages of design.</abstract><pub>ASME</pub><doi>10.1115/1.4036636</doi></addata></record>
fulltext fulltext
identifier ISSN: 0199-6231
ispartof Journal of solar energy engineering, 2017-08, Vol.139 (4)
issn 0199-6231
1528-8986
language eng
recordid cdi_crossref_primary_10_1115_1_4036636
source ASME Transactions Journals; Alma/SFX Local Collection
title Fast Estimation of the Damage Equivalent Load in Blade Geometry Multidisciplinar Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Estimation%20of%20the%20Damage%20Equivalent%20Load%20in%20Blade%20Geometry%20Multidisciplinar%20Optimization&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Dur%C3%A1,%20Fernando%20Echeverr%C3%ADa&rft.date=2017-08-01&rft.volume=139&rft.issue=4&rft.issn=0199-6231&rft.eissn=1528-8986&rft_id=info:doi/10.1115/1.4036636&rft_dat=%3Casme_cross%3E379717%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true