The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics

The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and nonlinear dynamics 2017-05, Vol.12 (3)
Hauptverfasser: Lauß, Thomas, Oberpeilsteiner, Stefan, Steiner, Wolfgang, Nachbagauer, Karin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of computational and nonlinear dynamics
container_volume 12
creator Lauß, Thomas
Oberpeilsteiner, Stefan
Steiner, Wolfgang
Nachbagauer, Karin
description The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.
doi_str_mv 10.1115/1.4035197
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4035197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>473875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-4d34c46fabbd1e1f73da1e56b6efc90854c7979281bc9edc61cd110f701d39933</originalsourceid><addsrcrecordid>eNo9kL9LAzEcxYMoWKuDs0tWh6v5NsnlMpZWq1CpQx2cQi4_MKV3KUluqH-9lRan93h8eDweQvdAJgDAn2DCCOUgxQUaAee8Ajall_8e-DW6yXlLCGOy4SP0tfl2eBGySa44PLPbGPqCl0nb4I5mHrv9UHQJscc-Jrzel9CFn1PwkWK7c13Gocfvw66ENtoDXhx63QWTb9GV17vs7s46Rp8vz5v5a7VaL9_ms1Wlp0yWilnKDKu9blsLDrygVoPjdVs7byRpODNCCjltoDXSWVODsQDECwKWSknpGD2eek2KOSfn1T6FTqeDAqL-PlGgzp8c2YcTq3Pn1DYOqT9OU0zQRnD6C_gOXdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics</title><source>ASME_美国机械工程师学会现刊</source><source>Alma/SFX Local Collection</source><creator>Lauß, Thomas ; Oberpeilsteiner, Stefan ; Steiner, Wolfgang ; Nachbagauer, Karin</creator><creatorcontrib>Lauß, Thomas ; Oberpeilsteiner, Stefan ; Steiner, Wolfgang ; Nachbagauer, Karin</creatorcontrib><description>The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.</description><identifier>ISSN: 1555-1415</identifier><identifier>EISSN: 1555-1423</identifier><identifier>DOI: 10.1115/1.4035197</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of computational and nonlinear dynamics, 2017-05, Vol.12 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-4d34c46fabbd1e1f73da1e56b6efc90854c7979281bc9edc61cd110f701d39933</citedby><cites>FETCH-LOGICAL-a249t-4d34c46fabbd1e1f73da1e56b6efc90854c7979281bc9edc61cd110f701d39933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Lauß, Thomas</creatorcontrib><creatorcontrib>Oberpeilsteiner, Stefan</creatorcontrib><creatorcontrib>Steiner, Wolfgang</creatorcontrib><creatorcontrib>Nachbagauer, Karin</creatorcontrib><title>The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics</title><title>Journal of computational and nonlinear dynamics</title><addtitle>J. Comput. Nonlinear Dynam</addtitle><description>The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.</description><issn>1555-1415</issn><issn>1555-1423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kL9LAzEcxYMoWKuDs0tWh6v5NsnlMpZWq1CpQx2cQi4_MKV3KUluqH-9lRan93h8eDweQvdAJgDAn2DCCOUgxQUaAee8Ajall_8e-DW6yXlLCGOy4SP0tfl2eBGySa44PLPbGPqCl0nb4I5mHrv9UHQJscc-Jrzel9CFn1PwkWK7c13Gocfvw66ENtoDXhx63QWTb9GV17vs7s46Rp8vz5v5a7VaL9_ms1Wlp0yWilnKDKu9blsLDrygVoPjdVs7byRpODNCCjltoDXSWVODsQDECwKWSknpGD2eek2KOSfn1T6FTqeDAqL-PlGgzp8c2YcTq3Pn1DYOqT9OU0zQRnD6C_gOXdo</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Lauß, Thomas</creator><creator>Oberpeilsteiner, Stefan</creator><creator>Steiner, Wolfgang</creator><creator>Nachbagauer, Karin</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics</title><author>Lauß, Thomas ; Oberpeilsteiner, Stefan ; Steiner, Wolfgang ; Nachbagauer, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-4d34c46fabbd1e1f73da1e56b6efc90854c7979281bc9edc61cd110f701d39933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauß, Thomas</creatorcontrib><creatorcontrib>Oberpeilsteiner, Stefan</creatorcontrib><creatorcontrib>Steiner, Wolfgang</creatorcontrib><creatorcontrib>Nachbagauer, Karin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauß, Thomas</au><au>Oberpeilsteiner, Stefan</au><au>Steiner, Wolfgang</au><au>Nachbagauer, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics</atitle><jtitle>Journal of computational and nonlinear dynamics</jtitle><stitle>J. Comput. Nonlinear Dynam</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><issn>1555-1415</issn><eissn>1555-1423</eissn><abstract>The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.</abstract><pub>ASME</pub><doi>10.1115/1.4035197</doi></addata></record>
fulltext fulltext
identifier ISSN: 1555-1415
ispartof Journal of computational and nonlinear dynamics, 2017-05, Vol.12 (3)
issn 1555-1415
1555-1423
language eng
recordid cdi_crossref_primary_10_1115_1_4035197
source ASME_美国机械工程师学会现刊; Alma/SFX Local Collection
title The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Discrete%20Adjoint%20Gradient%20Computation%20for%20Optimization%20Problems%20in%20Multibody%20Dynamics&rft.jtitle=Journal%20of%20computational%20and%20nonlinear%20dynamics&rft.au=Lau%C3%9F,%20Thomas&rft.date=2017-05-01&rft.volume=12&rft.issue=3&rft.issn=1555-1415&rft.eissn=1555-1423&rft_id=info:doi/10.1115/1.4035197&rft_dat=%3Casme_cross%3E473875%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true