The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics
The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alte...
Gespeichert in:
Veröffentlicht in: | Journal of computational and nonlinear dynamics 2017-05, Vol.12 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of computational and nonlinear dynamics |
container_volume | 12 |
creator | Lauß, Thomas Oberpeilsteiner, Stefan Steiner, Wolfgang Nachbagauer, Karin |
description | The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver. |
doi_str_mv | 10.1115/1.4035197 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4035197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>473875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-4d34c46fabbd1e1f73da1e56b6efc90854c7979281bc9edc61cd110f701d39933</originalsourceid><addsrcrecordid>eNo9kL9LAzEcxYMoWKuDs0tWh6v5NsnlMpZWq1CpQx2cQi4_MKV3KUluqH-9lRan93h8eDweQvdAJgDAn2DCCOUgxQUaAee8Ajall_8e-DW6yXlLCGOy4SP0tfl2eBGySa44PLPbGPqCl0nb4I5mHrv9UHQJscc-Jrzel9CFn1PwkWK7c13Gocfvw66ENtoDXhx63QWTb9GV17vs7s46Rp8vz5v5a7VaL9_ms1Wlp0yWilnKDKu9blsLDrygVoPjdVs7byRpODNCCjltoDXSWVODsQDECwKWSknpGD2eek2KOSfn1T6FTqeDAqL-PlGgzp8c2YcTq3Pn1DYOqT9OU0zQRnD6C_gOXdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics</title><source>ASME_美国机械工程师学会现刊</source><source>Alma/SFX Local Collection</source><creator>Lauß, Thomas ; Oberpeilsteiner, Stefan ; Steiner, Wolfgang ; Nachbagauer, Karin</creator><creatorcontrib>Lauß, Thomas ; Oberpeilsteiner, Stefan ; Steiner, Wolfgang ; Nachbagauer, Karin</creatorcontrib><description>The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.</description><identifier>ISSN: 1555-1415</identifier><identifier>EISSN: 1555-1423</identifier><identifier>DOI: 10.1115/1.4035197</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of computational and nonlinear dynamics, 2017-05, Vol.12 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-4d34c46fabbd1e1f73da1e56b6efc90854c7979281bc9edc61cd110f701d39933</citedby><cites>FETCH-LOGICAL-a249t-4d34c46fabbd1e1f73da1e56b6efc90854c7979281bc9edc61cd110f701d39933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Lauß, Thomas</creatorcontrib><creatorcontrib>Oberpeilsteiner, Stefan</creatorcontrib><creatorcontrib>Steiner, Wolfgang</creatorcontrib><creatorcontrib>Nachbagauer, Karin</creatorcontrib><title>The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics</title><title>Journal of computational and nonlinear dynamics</title><addtitle>J. Comput. Nonlinear Dynam</addtitle><description>The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.</description><issn>1555-1415</issn><issn>1555-1423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kL9LAzEcxYMoWKuDs0tWh6v5NsnlMpZWq1CpQx2cQi4_MKV3KUluqH-9lRan93h8eDweQvdAJgDAn2DCCOUgxQUaAee8Ajall_8e-DW6yXlLCGOy4SP0tfl2eBGySa44PLPbGPqCl0nb4I5mHrv9UHQJscc-Jrzel9CFn1PwkWK7c13Gocfvw66ENtoDXhx63QWTb9GV17vs7s46Rp8vz5v5a7VaL9_ms1Wlp0yWilnKDKu9blsLDrygVoPjdVs7byRpODNCCjltoDXSWVODsQDECwKWSknpGD2eek2KOSfn1T6FTqeDAqL-PlGgzp8c2YcTq3Pn1DYOqT9OU0zQRnD6C_gOXdo</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Lauß, Thomas</creator><creator>Oberpeilsteiner, Stefan</creator><creator>Steiner, Wolfgang</creator><creator>Nachbagauer, Karin</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics</title><author>Lauß, Thomas ; Oberpeilsteiner, Stefan ; Steiner, Wolfgang ; Nachbagauer, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-4d34c46fabbd1e1f73da1e56b6efc90854c7979281bc9edc61cd110f701d39933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauß, Thomas</creatorcontrib><creatorcontrib>Oberpeilsteiner, Stefan</creatorcontrib><creatorcontrib>Steiner, Wolfgang</creatorcontrib><creatorcontrib>Nachbagauer, Karin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauß, Thomas</au><au>Oberpeilsteiner, Stefan</au><au>Steiner, Wolfgang</au><au>Nachbagauer, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics</atitle><jtitle>Journal of computational and nonlinear dynamics</jtitle><stitle>J. Comput. Nonlinear Dynam</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><issn>1555-1415</issn><eissn>1555-1423</eissn><abstract>The adjoint method is a very efficient way to compute the gradient of a cost functional associated to a dynamical system depending on a set of input signals. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. An alternative and maybe more natural approach is the discrete adjoint method (DAM), which constructs a finite difference scheme for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of motion. The method delivers the exact gradient of the discretized cost functional subjected to the discretized equations of motion. For the application of the discrete adjoint method to the forward solver, several matrices are necessary. In this contribution, the matrices are derived for the simple Euler explicit method and for the classical implicit Hilber–Hughes–Taylor (HHT) solver.</abstract><pub>ASME</pub><doi>10.1115/1.4035197</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1555-1415 |
ispartof | Journal of computational and nonlinear dynamics, 2017-05, Vol.12 (3) |
issn | 1555-1415 1555-1423 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4035197 |
source | ASME_美国机械工程师学会现刊; Alma/SFX Local Collection |
title | The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Discrete%20Adjoint%20Gradient%20Computation%20for%20Optimization%20Problems%20in%20Multibody%20Dynamics&rft.jtitle=Journal%20of%20computational%20and%20nonlinear%20dynamics&rft.au=Lau%C3%9F,%20Thomas&rft.date=2017-05-01&rft.volume=12&rft.issue=3&rft.issn=1555-1415&rft.eissn=1555-1423&rft_id=info:doi/10.1115/1.4035197&rft_dat=%3Casme_cross%3E473875%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |