Empirical Correlation of the Primary Stability Variable of Liquid Jet and Liquid Sheet Under Acoustic Field

The investigation focuses on optimizing the length of wind-pipe that transmits acoustic energy from the compression driver to the cavity of twin-fluid atomizers. To accomplish this objective, the primary variable of stability, that is, the breakup length of liquid jet and sheet under acoustic pertur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2016-08, Vol.138 (8)
Hauptverfasser: Sivadas, V, Balaji, K, Sampathkumar, M, Hassan, M. M, Karthik, K. M, Saidileep, Koneru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of fluids engineering
container_volume 138
creator Sivadas, V
Balaji, K
Sampathkumar, M
Hassan, M. M
Karthik, K. M
Saidileep, Koneru
description The investigation focuses on optimizing the length of wind-pipe that transmits acoustic energy from the compression driver to the cavity of twin-fluid atomizers. To accomplish this objective, the primary variable of stability, that is, the breakup length of liquid jet and sheet under acoustic perturbations has been experimentally characterized for a range of wind-pipe length and liquid velocity. The analysis considers liquid phase Weber number in the range of 0.7–8, and the results are compared with primary breakup data without acoustic perturbations. The range of Weber number tested belongs to Rayleigh breakup zone, so that inertia force is negligible compared to surface tension force. It shows the existence of unique stability functions based on dimensionless products up to an optimum wind-pipe length, which extends greater for liquid sheet configuration. The present results may find relevance in atomizer design that utilizes acoustic source to enhance liquid column breakup processes.
doi_str_mv 10.1115/1.4033028
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4033028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>472227</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-509ef0b02362e2aa7abe893fd515c982b52287e1a8c27f6d849f7eca9e16b50e3</originalsourceid><addsrcrecordid>eNo1kL1PwzAQxS0EEqUwMLN4ZUixz3Fjj1XV8qFKIJUitujiXFSXNCl2MvS_p1XL9PSefnq6e4zdSzGSUuonOUqFUgLMBRtIDSaxQn5fsoEQ1iQAAq7ZTYwbIaRSqRmwn9l254N3WPNpGwLV2Pm24W3FuzXxj-C3GPZ82WHha9_t-RcGj0VNR2Lhf3tf8jfqODblv12u6RCsmpICn7i2j513fO6pLm_ZVYV1pLuzDtlqPvucviSL9-fX6WSRIKS2S7SwVIlCgBoDAWKGBRmrqlJL7ayBQgOYjCQaB1k1Lk1qq4wcWpLjQgtSQ_Z46nWhjTFQle9Of-RS5MeVcpmfVzqwDycW45byTduH5nBanmYAkKk_595jJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Empirical Correlation of the Primary Stability Variable of Liquid Jet and Liquid Sheet Under Acoustic Field</title><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Sivadas, V ; Balaji, K ; Sampathkumar, M ; Hassan, M. M ; Karthik, K. M ; Saidileep, Koneru</creator><creatorcontrib>Sivadas, V ; Balaji, K ; Sampathkumar, M ; Hassan, M. M ; Karthik, K. M ; Saidileep, Koneru</creatorcontrib><description>The investigation focuses on optimizing the length of wind-pipe that transmits acoustic energy from the compression driver to the cavity of twin-fluid atomizers. To accomplish this objective, the primary variable of stability, that is, the breakup length of liquid jet and sheet under acoustic perturbations has been experimentally characterized for a range of wind-pipe length and liquid velocity. The analysis considers liquid phase Weber number in the range of 0.7–8, and the results are compared with primary breakup data without acoustic perturbations. The range of Weber number tested belongs to Rayleigh breakup zone, so that inertia force is negligible compared to surface tension force. It shows the existence of unique stability functions based on dimensionless products up to an optimum wind-pipe length, which extends greater for liquid sheet configuration. The present results may find relevance in atomizer design that utilizes acoustic source to enhance liquid column breakup processes.</description><identifier>ISSN: 0098-2202</identifier><identifier>EISSN: 1528-901X</identifier><identifier>DOI: 10.1115/1.4033028</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of fluids engineering, 2016-08, Vol.138 (8)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-509ef0b02362e2aa7abe893fd515c982b52287e1a8c27f6d849f7eca9e16b50e3</citedby><cites>FETCH-LOGICAL-a249t-509ef0b02362e2aa7abe893fd515c982b52287e1a8c27f6d849f7eca9e16b50e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Sivadas, V</creatorcontrib><creatorcontrib>Balaji, K</creatorcontrib><creatorcontrib>Sampathkumar, M</creatorcontrib><creatorcontrib>Hassan, M. M</creatorcontrib><creatorcontrib>Karthik, K. M</creatorcontrib><creatorcontrib>Saidileep, Koneru</creatorcontrib><title>Empirical Correlation of the Primary Stability Variable of Liquid Jet and Liquid Sheet Under Acoustic Field</title><title>Journal of fluids engineering</title><addtitle>J. Fluids Eng</addtitle><description>The investigation focuses on optimizing the length of wind-pipe that transmits acoustic energy from the compression driver to the cavity of twin-fluid atomizers. To accomplish this objective, the primary variable of stability, that is, the breakup length of liquid jet and sheet under acoustic perturbations has been experimentally characterized for a range of wind-pipe length and liquid velocity. The analysis considers liquid phase Weber number in the range of 0.7–8, and the results are compared with primary breakup data without acoustic perturbations. The range of Weber number tested belongs to Rayleigh breakup zone, so that inertia force is negligible compared to surface tension force. It shows the existence of unique stability functions based on dimensionless products up to an optimum wind-pipe length, which extends greater for liquid sheet configuration. The present results may find relevance in atomizer design that utilizes acoustic source to enhance liquid column breakup processes.</description><issn>0098-2202</issn><issn>1528-901X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1kL1PwzAQxS0EEqUwMLN4ZUixz3Fjj1XV8qFKIJUitujiXFSXNCl2MvS_p1XL9PSefnq6e4zdSzGSUuonOUqFUgLMBRtIDSaxQn5fsoEQ1iQAAq7ZTYwbIaRSqRmwn9l254N3WPNpGwLV2Pm24W3FuzXxj-C3GPZ82WHha9_t-RcGj0VNR2Lhf3tf8jfqODblv12u6RCsmpICn7i2j513fO6pLm_ZVYV1pLuzDtlqPvucviSL9-fX6WSRIKS2S7SwVIlCgBoDAWKGBRmrqlJL7ayBQgOYjCQaB1k1Lk1qq4wcWpLjQgtSQ_Z46nWhjTFQle9Of-RS5MeVcpmfVzqwDycW45byTduH5nBanmYAkKk_595jJQ</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Sivadas, V</creator><creator>Balaji, K</creator><creator>Sampathkumar, M</creator><creator>Hassan, M. M</creator><creator>Karthik, K. M</creator><creator>Saidileep, Koneru</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160801</creationdate><title>Empirical Correlation of the Primary Stability Variable of Liquid Jet and Liquid Sheet Under Acoustic Field</title><author>Sivadas, V ; Balaji, K ; Sampathkumar, M ; Hassan, M. M ; Karthik, K. M ; Saidileep, Koneru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-509ef0b02362e2aa7abe893fd515c982b52287e1a8c27f6d849f7eca9e16b50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivadas, V</creatorcontrib><creatorcontrib>Balaji, K</creatorcontrib><creatorcontrib>Sampathkumar, M</creatorcontrib><creatorcontrib>Hassan, M. M</creatorcontrib><creatorcontrib>Karthik, K. M</creatorcontrib><creatorcontrib>Saidileep, Koneru</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fluids engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivadas, V</au><au>Balaji, K</au><au>Sampathkumar, M</au><au>Hassan, M. M</au><au>Karthik, K. M</au><au>Saidileep, Koneru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Correlation of the Primary Stability Variable of Liquid Jet and Liquid Sheet Under Acoustic Field</atitle><jtitle>Journal of fluids engineering</jtitle><stitle>J. Fluids Eng</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>138</volume><issue>8</issue><issn>0098-2202</issn><eissn>1528-901X</eissn><abstract>The investigation focuses on optimizing the length of wind-pipe that transmits acoustic energy from the compression driver to the cavity of twin-fluid atomizers. To accomplish this objective, the primary variable of stability, that is, the breakup length of liquid jet and sheet under acoustic perturbations has been experimentally characterized for a range of wind-pipe length and liquid velocity. The analysis considers liquid phase Weber number in the range of 0.7–8, and the results are compared with primary breakup data without acoustic perturbations. The range of Weber number tested belongs to Rayleigh breakup zone, so that inertia force is negligible compared to surface tension force. It shows the existence of unique stability functions based on dimensionless products up to an optimum wind-pipe length, which extends greater for liquid sheet configuration. The present results may find relevance in atomizer design that utilizes acoustic source to enhance liquid column breakup processes.</abstract><pub>ASME</pub><doi>10.1115/1.4033028</doi></addata></record>
fulltext fulltext
identifier ISSN: 0098-2202
ispartof Journal of fluids engineering, 2016-08, Vol.138 (8)
issn 0098-2202
1528-901X
language eng
recordid cdi_crossref_primary_10_1115_1_4033028
source Alma/SFX Local Collection; ASME Transactions Journals (Current)
title Empirical Correlation of the Primary Stability Variable of Liquid Jet and Liquid Sheet Under Acoustic Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Correlation%20of%20the%20Primary%20Stability%20Variable%20of%20Liquid%20Jet%20and%20Liquid%20Sheet%20Under%20Acoustic%20Field&rft.jtitle=Journal%20of%20fluids%20engineering&rft.au=Sivadas,%20V&rft.date=2016-08-01&rft.volume=138&rft.issue=8&rft.issn=0098-2202&rft.eissn=1528-901X&rft_id=info:doi/10.1115/1.4033028&rft_dat=%3Casme_cross%3E472227%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true