Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell

The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solar energy engineering 2014-08, Vol.136 (3)
Hauptverfasser: Reeser, Alexander, Wang, Peng, Hetsroni, Gad, Bar-Cohen, Avram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of solar energy engineering
container_volume 136
creator Reeser, Alexander
Wang, Peng
Hetsroni, Gad
Bar-Cohen, Avram
description The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microchannel coolers is developed and exercised with empirical correlations from the open literature for the heat transfer coefficient, pressure drop, and critical heat flux. The thermofluid analysis is augmented by detailed energy modeling relating the solar energy harvest to the “parasitic” work expended to provide the requisite cooling, including pumping power and the energy consumed in the formation and fabrication of the microcooler itself. Three fin thicknesses, between 100 μm and 500 μm, a variable number of fins, between 0 and 9, and 5 channel heights between 0.25 mm and 3 mm, are examined for a R134a flow rate of 0.85 g/s to determine the energy efficient microcooler design for a 10 mm × 10 mm triple junction CPV cell.
doi_str_mv 10.1115/1.4027422
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4027422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>379605</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-2da40773d2bc9a683a68413a0fe3f8761e45ca3693ee83d2f77679ca61b4cc883</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgUQpDMwsXhgYUvwV2xlRKF8qokOZo6trt65Su7JTqv57gloxnG557nT3InRLyYhSWj7SkSBMCcbO0ICWTBe60vIcDQitqkIyTi_RVc5rQijnJRug-TjYtDzgsXPeeBs6PNvHYrqCbPGnNymaGFub8LPNfhmwiwkDrmMwPU3Q2QWermIXf2LbgTd4lvy2tfhjF0znY8C1bdtrdOGgzfbm1Ifo-2U8q9-Kydfre_00KYBr2RVsAYIoxRdsbiqQmvclKAfiLHdaSWpFaYDLilure-WUkqoyIOlcGKM1H6KH497-6pyTdc02-Q2kQ0NJ8xdOQ5tTOL29P9otZAOtSxCMz_8DTCuhBJG9uzs6yBvbrOMuhf6FhqtKkpL_AkVXbNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell</title><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Reeser, Alexander ; Wang, Peng ; Hetsroni, Gad ; Bar-Cohen, Avram</creator><creatorcontrib>Reeser, Alexander ; Wang, Peng ; Hetsroni, Gad ; Bar-Cohen, Avram</creatorcontrib><description>The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microchannel coolers is developed and exercised with empirical correlations from the open literature for the heat transfer coefficient, pressure drop, and critical heat flux. The thermofluid analysis is augmented by detailed energy modeling relating the solar energy harvest to the “parasitic” work expended to provide the requisite cooling, including pumping power and the energy consumed in the formation and fabrication of the microcooler itself. Three fin thicknesses, between 100 μm and 500 μm, a variable number of fins, between 0 and 9, and 5 channel heights between 0.25 mm and 3 mm, are examined for a R134a flow rate of 0.85 g/s to determine the energy efficient microcooler design for a 10 mm × 10 mm triple junction CPV cell.</description><identifier>ISSN: 0199-6231</identifier><identifier>EISSN: 1528-8986</identifier><identifier>DOI: 10.1115/1.4027422</identifier><identifier>CODEN: JSEEDO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Exact sciences and technology ; Natural energy ; Photoelectric conversion ; Photovoltaic conversion ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Journal of solar energy engineering, 2014-08, Vol.136 (3)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-2da40773d2bc9a683a68413a0fe3f8761e45ca3693ee83d2f77679ca61b4cc883</citedby><cites>FETCH-LOGICAL-a386t-2da40773d2bc9a683a68413a0fe3f8761e45ca3693ee83d2f77679ca61b4cc883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28747406$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reeser, Alexander</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Hetsroni, Gad</creatorcontrib><creatorcontrib>Bar-Cohen, Avram</creatorcontrib><title>Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell</title><title>Journal of solar energy engineering</title><addtitle>J. Sol. Energy Eng</addtitle><description>The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microchannel coolers is developed and exercised with empirical correlations from the open literature for the heat transfer coefficient, pressure drop, and critical heat flux. The thermofluid analysis is augmented by detailed energy modeling relating the solar energy harvest to the “parasitic” work expended to provide the requisite cooling, including pumping power and the energy consumed in the formation and fabrication of the microcooler itself. Three fin thicknesses, between 100 μm and 500 μm, a variable number of fins, between 0 and 9, and 5 channel heights between 0.25 mm and 3 mm, are examined for a R134a flow rate of 0.85 g/s to determine the energy efficient microcooler design for a 10 mm × 10 mm triple junction CPV cell.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic conversion</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>0199-6231</issn><issn>1528-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQBmALgUQpDMwsXhgYUvwV2xlRKF8qokOZo6trt65Su7JTqv57gloxnG557nT3InRLyYhSWj7SkSBMCcbO0ICWTBe60vIcDQitqkIyTi_RVc5rQijnJRug-TjYtDzgsXPeeBs6PNvHYrqCbPGnNymaGFub8LPNfhmwiwkDrmMwPU3Q2QWermIXf2LbgTd4lvy2tfhjF0znY8C1bdtrdOGgzfbm1Ifo-2U8q9-Kydfre_00KYBr2RVsAYIoxRdsbiqQmvclKAfiLHdaSWpFaYDLilure-WUkqoyIOlcGKM1H6KH497-6pyTdc02-Q2kQ0NJ8xdOQ5tTOL29P9otZAOtSxCMz_8DTCuhBJG9uzs6yBvbrOMuhf6FhqtKkpL_AkVXbNo</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Reeser, Alexander</creator><creator>Wang, Peng</creator><creator>Hetsroni, Gad</creator><creator>Bar-Cohen, Avram</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell</title><author>Reeser, Alexander ; Wang, Peng ; Hetsroni, Gad ; Bar-Cohen, Avram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-2da40773d2bc9a683a68413a0fe3f8761e45ca3693ee83d2f77679ca61b4cc883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic conversion</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reeser, Alexander</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Hetsroni, Gad</creatorcontrib><creatorcontrib>Bar-Cohen, Avram</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reeser, Alexander</au><au>Wang, Peng</au><au>Hetsroni, Gad</au><au>Bar-Cohen, Avram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell</atitle><jtitle>Journal of solar energy engineering</jtitle><stitle>J. Sol. Energy Eng</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>136</volume><issue>3</issue><issn>0199-6231</issn><eissn>1528-8986</eissn><coden>JSEEDO</coden><abstract>The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microchannel coolers is developed and exercised with empirical correlations from the open literature for the heat transfer coefficient, pressure drop, and critical heat flux. The thermofluid analysis is augmented by detailed energy modeling relating the solar energy harvest to the “parasitic” work expended to provide the requisite cooling, including pumping power and the energy consumed in the formation and fabrication of the microcooler itself. Three fin thicknesses, between 100 μm and 500 μm, a variable number of fins, between 0 and 9, and 5 channel heights between 0.25 mm and 3 mm, are examined for a R134a flow rate of 0.85 g/s to determine the energy efficient microcooler design for a 10 mm × 10 mm triple junction CPV cell.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.4027422</doi></addata></record>
fulltext fulltext
identifier ISSN: 0199-6231
ispartof Journal of solar energy engineering, 2014-08, Vol.136 (3)
issn 0199-6231
1528-8986
language eng
recordid cdi_crossref_primary_10_1115_1_4027422
source Alma/SFX Local Collection; ASME Transactions Journals (Current)
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy
Exact sciences and technology
Natural energy
Photoelectric conversion
Photovoltaic conversion
Solar cells. Photoelectrochemical cells
Solar energy
title Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Efficient%20Two-Phase%20Microcooler%20Design%20for%20a%20Concentrated%20Photovoltaic%20Triple%20Junction%20Cell&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Reeser,%20Alexander&rft.date=2014-08-01&rft.volume=136&rft.issue=3&rft.issn=0199-6231&rft.eissn=1528-8986&rft.coden=JSEEDO&rft_id=info:doi/10.1115/1.4027422&rft_dat=%3Casme_cross%3E379605%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true