Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell
The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microch...
Gespeichert in:
Veröffentlicht in: | Journal of solar energy engineering 2014-08, Vol.136 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of solar energy engineering |
container_volume | 136 |
creator | Reeser, Alexander Wang, Peng Hetsroni, Gad Bar-Cohen, Avram |
description | The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microchannel coolers is developed and exercised with empirical correlations from the open literature for the heat transfer coefficient, pressure drop, and critical heat flux. The thermofluid analysis is augmented by detailed energy modeling relating the solar energy harvest to the “parasitic” work expended to provide the requisite cooling, including pumping power and the energy consumed in the formation and fabrication of the microcooler itself. Three fin thicknesses, between 100 μm and 500 μm, a variable number of fins, between 0 and 9, and 5 channel heights between 0.25 mm and 3 mm, are examined for a R134a flow rate of 0.85 g/s to determine the energy efficient microcooler design for a 10 mm × 10 mm triple junction CPV cell. |
doi_str_mv | 10.1115/1.4027422 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4027422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>379605</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-2da40773d2bc9a683a68413a0fe3f8761e45ca3693ee83d2f77679ca61b4cc883</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgUQpDMwsXhgYUvwV2xlRKF8qokOZo6trt65Su7JTqv57gloxnG557nT3InRLyYhSWj7SkSBMCcbO0ICWTBe60vIcDQitqkIyTi_RVc5rQijnJRug-TjYtDzgsXPeeBs6PNvHYrqCbPGnNymaGFub8LPNfhmwiwkDrmMwPU3Q2QWermIXf2LbgTd4lvy2tfhjF0znY8C1bdtrdOGgzfbm1Ifo-2U8q9-Kydfre_00KYBr2RVsAYIoxRdsbiqQmvclKAfiLHdaSWpFaYDLilure-WUkqoyIOlcGKM1H6KH497-6pyTdc02-Q2kQ0NJ8xdOQ5tTOL29P9otZAOtSxCMz_8DTCuhBJG9uzs6yBvbrOMuhf6FhqtKkpL_AkVXbNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell</title><source>Alma/SFX Local Collection</source><source>ASME Transactions Journals (Current)</source><creator>Reeser, Alexander ; Wang, Peng ; Hetsroni, Gad ; Bar-Cohen, Avram</creator><creatorcontrib>Reeser, Alexander ; Wang, Peng ; Hetsroni, Gad ; Bar-Cohen, Avram</creatorcontrib><description>The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microchannel coolers is developed and exercised with empirical correlations from the open literature for the heat transfer coefficient, pressure drop, and critical heat flux. The thermofluid analysis is augmented by detailed energy modeling relating the solar energy harvest to the “parasitic” work expended to provide the requisite cooling, including pumping power and the energy consumed in the formation and fabrication of the microcooler itself. Three fin thicknesses, between 100 μm and 500 μm, a variable number of fins, between 0 and 9, and 5 channel heights between 0.25 mm and 3 mm, are examined for a R134a flow rate of 0.85 g/s to determine the energy efficient microcooler design for a 10 mm × 10 mm triple junction CPV cell.</description><identifier>ISSN: 0199-6231</identifier><identifier>EISSN: 1528-8986</identifier><identifier>DOI: 10.1115/1.4027422</identifier><identifier>CODEN: JSEEDO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy ; Exact sciences and technology ; Natural energy ; Photoelectric conversion ; Photovoltaic conversion ; Solar cells. Photoelectrochemical cells ; Solar energy</subject><ispartof>Journal of solar energy engineering, 2014-08, Vol.136 (3)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-2da40773d2bc9a683a68413a0fe3f8761e45ca3693ee83d2f77679ca61b4cc883</citedby><cites>FETCH-LOGICAL-a386t-2da40773d2bc9a683a68413a0fe3f8761e45ca3693ee83d2f77679ca61b4cc883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28747406$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reeser, Alexander</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Hetsroni, Gad</creatorcontrib><creatorcontrib>Bar-Cohen, Avram</creatorcontrib><title>Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell</title><title>Journal of solar energy engineering</title><addtitle>J. Sol. Energy Eng</addtitle><description>The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microchannel coolers is developed and exercised with empirical correlations from the open literature for the heat transfer coefficient, pressure drop, and critical heat flux. The thermofluid analysis is augmented by detailed energy modeling relating the solar energy harvest to the “parasitic” work expended to provide the requisite cooling, including pumping power and the energy consumed in the formation and fabrication of the microcooler itself. Three fin thicknesses, between 100 μm and 500 μm, a variable number of fins, between 0 and 9, and 5 channel heights between 0.25 mm and 3 mm, are examined for a R134a flow rate of 0.85 g/s to determine the energy efficient microcooler design for a 10 mm × 10 mm triple junction CPV cell.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic conversion</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><issn>0199-6231</issn><issn>1528-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQBmALgUQpDMwsXhgYUvwV2xlRKF8qokOZo6trt65Su7JTqv57gloxnG557nT3InRLyYhSWj7SkSBMCcbO0ICWTBe60vIcDQitqkIyTi_RVc5rQijnJRug-TjYtDzgsXPeeBs6PNvHYrqCbPGnNymaGFub8LPNfhmwiwkDrmMwPU3Q2QWermIXf2LbgTd4lvy2tfhjF0znY8C1bdtrdOGgzfbm1Ifo-2U8q9-Kydfre_00KYBr2RVsAYIoxRdsbiqQmvclKAfiLHdaSWpFaYDLilure-WUkqoyIOlcGKM1H6KH497-6pyTdc02-Q2kQ0NJ8xdOQ5tTOL29P9otZAOtSxCMz_8DTCuhBJG9uzs6yBvbrOMuhf6FhqtKkpL_AkVXbNo</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Reeser, Alexander</creator><creator>Wang, Peng</creator><creator>Hetsroni, Gad</creator><creator>Bar-Cohen, Avram</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell</title><author>Reeser, Alexander ; Wang, Peng ; Hetsroni, Gad ; Bar-Cohen, Avram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-2da40773d2bc9a683a68413a0fe3f8761e45ca3693ee83d2f77679ca61b4cc883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic conversion</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reeser, Alexander</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Hetsroni, Gad</creatorcontrib><creatorcontrib>Bar-Cohen, Avram</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reeser, Alexander</au><au>Wang, Peng</au><au>Hetsroni, Gad</au><au>Bar-Cohen, Avram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell</atitle><jtitle>Journal of solar energy engineering</jtitle><stitle>J. Sol. Energy Eng</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>136</volume><issue>3</issue><issn>0199-6231</issn><eissn>1528-8986</eissn><coden>JSEEDO</coden><abstract>The potential application of an R134a-cooled two-phase microcooler for thermal management of a triple junction solar cell (CPV), under concentration of 2000 suns, is presented. An analytical model for the triple-junction solar cell temperature based on prediction of two-phase flow boiling in microchannel coolers is developed and exercised with empirical correlations from the open literature for the heat transfer coefficient, pressure drop, and critical heat flux. The thermofluid analysis is augmented by detailed energy modeling relating the solar energy harvest to the “parasitic” work expended to provide the requisite cooling, including pumping power and the energy consumed in the formation and fabrication of the microcooler itself. Three fin thicknesses, between 100 μm and 500 μm, a variable number of fins, between 0 and 9, and 5 channel heights between 0.25 mm and 3 mm, are examined for a R134a flow rate of 0.85 g/s to determine the energy efficient microcooler design for a 10 mm × 10 mm triple junction CPV cell.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.4027422</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0199-6231 |
ispartof | Journal of solar energy engineering, 2014-08, Vol.136 (3) |
issn | 0199-6231 1528-8986 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4027422 |
source | Alma/SFX Local Collection; ASME Transactions Journals (Current) |
subjects | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Energy Exact sciences and technology Natural energy Photoelectric conversion Photovoltaic conversion Solar cells. Photoelectrochemical cells Solar energy |
title | Energy Efficient Two-Phase Microcooler Design for a Concentrated Photovoltaic Triple Junction Cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Efficient%20Two-Phase%20Microcooler%20Design%20for%20a%20Concentrated%20Photovoltaic%20Triple%20Junction%20Cell&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Reeser,%20Alexander&rft.date=2014-08-01&rft.volume=136&rft.issue=3&rft.issn=0199-6231&rft.eissn=1528-8986&rft.coden=JSEEDO&rft_id=info:doi/10.1115/1.4027422&rft_dat=%3Casme_cross%3E379605%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |