Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators
This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter ha...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and acoustics 2013-04, Vol.135 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of vibration and acoustics |
container_volume | 135 |
creator | Vallabhaneni, Ajit K Rhoads, Jeffrey F Murthy, Jayathi Y Ruan, Xiulin |
description | This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems. |
doi_str_mv | 10.1115/1.4023057 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4023057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>380204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-432e69e9f9c08e5682e004fbdd48f3fb0922112f9ea2acec79d9632390c066a13</originalsourceid><addsrcrecordid>eNotkD1PAzEQRC0EEiFQUNO4pbiwXvsudokCgUgJSHzUls-3hosSO7IvBf-eoFDNFE-j0WPsWsBECFHfiYkClFBPT9hI1KgrbXB6euigdGUA8JxdlLIGEFLW9YjNHyiQH6pF7PaeOr4i_-1i792Gr1JH_H236Yehj1-8j3zmcpsif3ExDfuW-BuVFN2QcrlkZ8FtCl3955h9zh8_Zs_V8vVpMbtfVg6VGSolkRpDJhgPmupGIwGo0Had0kGGFgyiEBgMOXSe_NR0ppEoDXhoGifkmN0ed31OpWQKdpf7rcs_VoD9E2CF_RdwYG-OrCtbsuu0z_FwzUoNCEr-AjROVXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Vallabhaneni, Ajit K ; Rhoads, Jeffrey F ; Murthy, Jayathi Y ; Ruan, Xiulin</creator><creatorcontrib>Vallabhaneni, Ajit K ; Rhoads, Jeffrey F ; Murthy, Jayathi Y ; Ruan, Xiulin</creatorcontrib><description>This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems.</description><identifier>ISSN: 1048-9002</identifier><identifier>EISSN: 1528-8927</identifier><identifier>DOI: 10.1115/1.4023057</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of vibration and acoustics, 2013-04, Vol.135 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-432e69e9f9c08e5682e004fbdd48f3fb0922112f9ea2acec79d9632390c066a13</citedby><cites>FETCH-LOGICAL-a249t-432e69e9f9c08e5682e004fbdd48f3fb0922112f9ea2acec79d9632390c066a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Vallabhaneni, Ajit K</creatorcontrib><creatorcontrib>Rhoads, Jeffrey F</creatorcontrib><creatorcontrib>Murthy, Jayathi Y</creatorcontrib><creatorcontrib>Ruan, Xiulin</creatorcontrib><title>Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators</title><title>Journal of vibration and acoustics</title><addtitle>J. Vib. Acoust</addtitle><description>This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems.</description><issn>1048-9002</issn><issn>1528-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkD1PAzEQRC0EEiFQUNO4pbiwXvsudokCgUgJSHzUls-3hosSO7IvBf-eoFDNFE-j0WPsWsBECFHfiYkClFBPT9hI1KgrbXB6euigdGUA8JxdlLIGEFLW9YjNHyiQH6pF7PaeOr4i_-1i792Gr1JH_H236Yehj1-8j3zmcpsif3ExDfuW-BuVFN2QcrlkZ8FtCl3955h9zh8_Zs_V8vVpMbtfVg6VGSolkRpDJhgPmupGIwGo0Had0kGGFgyiEBgMOXSe_NR0ppEoDXhoGifkmN0ed31OpWQKdpf7rcs_VoD9E2CF_RdwYG-OrCtbsuu0z_FwzUoNCEr-AjROVXY</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Vallabhaneni, Ajit K</creator><creator>Rhoads, Jeffrey F</creator><creator>Murthy, Jayathi Y</creator><creator>Ruan, Xiulin</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators</title><author>Vallabhaneni, Ajit K ; Rhoads, Jeffrey F ; Murthy, Jayathi Y ; Ruan, Xiulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-432e69e9f9c08e5682e004fbdd48f3fb0922112f9ea2acec79d9632390c066a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallabhaneni, Ajit K</creatorcontrib><creatorcontrib>Rhoads, Jeffrey F</creatorcontrib><creatorcontrib>Murthy, Jayathi Y</creatorcontrib><creatorcontrib>Ruan, Xiulin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vibration and acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallabhaneni, Ajit K</au><au>Rhoads, Jeffrey F</au><au>Murthy, Jayathi Y</au><au>Ruan, Xiulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators</atitle><jtitle>Journal of vibration and acoustics</jtitle><stitle>J. Vib. Acoust</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>135</volume><issue>2</issue><issn>1048-9002</issn><eissn>1528-8927</eissn><abstract>This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems.</abstract><pub>ASME</pub><doi>10.1115/1.4023057</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1048-9002 |
ispartof | Journal of vibration and acoustics, 2013-04, Vol.135 (2) |
issn | 1048-9002 1528-8927 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4023057 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
title | Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-Induced%20Mechanical%20Mode%20Splitting%20in%20Carbon%20Nanotube%20Resonators&rft.jtitle=Journal%20of%20vibration%20and%20acoustics&rft.au=Vallabhaneni,%20Ajit%20K&rft.date=2013-04-01&rft.volume=135&rft.issue=2&rft.issn=1048-9002&rft.eissn=1528-8927&rft_id=info:doi/10.1115/1.4023057&rft_dat=%3Casme_cross%3E380204%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |