Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators

This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and acoustics 2013-04, Vol.135 (2)
Hauptverfasser: Vallabhaneni, Ajit K, Rhoads, Jeffrey F, Murthy, Jayathi Y, Ruan, Xiulin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of vibration and acoustics
container_volume 135
creator Vallabhaneni, Ajit K
Rhoads, Jeffrey F
Murthy, Jayathi Y
Ruan, Xiulin
description This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems.
doi_str_mv 10.1115/1.4023057
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4023057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>380204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-432e69e9f9c08e5682e004fbdd48f3fb0922112f9ea2acec79d9632390c066a13</originalsourceid><addsrcrecordid>eNotkD1PAzEQRC0EEiFQUNO4pbiwXvsudokCgUgJSHzUls-3hosSO7IvBf-eoFDNFE-j0WPsWsBECFHfiYkClFBPT9hI1KgrbXB6euigdGUA8JxdlLIGEFLW9YjNHyiQH6pF7PaeOr4i_-1i792Gr1JH_H236Yehj1-8j3zmcpsif3ExDfuW-BuVFN2QcrlkZ8FtCl3955h9zh8_Zs_V8vVpMbtfVg6VGSolkRpDJhgPmupGIwGo0Had0kGGFgyiEBgMOXSe_NR0ppEoDXhoGifkmN0ed31OpWQKdpf7rcs_VoD9E2CF_RdwYG-OrCtbsuu0z_FwzUoNCEr-AjROVXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Vallabhaneni, Ajit K ; Rhoads, Jeffrey F ; Murthy, Jayathi Y ; Ruan, Xiulin</creator><creatorcontrib>Vallabhaneni, Ajit K ; Rhoads, Jeffrey F ; Murthy, Jayathi Y ; Ruan, Xiulin</creatorcontrib><description>This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems.</description><identifier>ISSN: 1048-9002</identifier><identifier>EISSN: 1528-8927</identifier><identifier>DOI: 10.1115/1.4023057</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of vibration and acoustics, 2013-04, Vol.135 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-432e69e9f9c08e5682e004fbdd48f3fb0922112f9ea2acec79d9632390c066a13</citedby><cites>FETCH-LOGICAL-a249t-432e69e9f9c08e5682e004fbdd48f3fb0922112f9ea2acec79d9632390c066a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Vallabhaneni, Ajit K</creatorcontrib><creatorcontrib>Rhoads, Jeffrey F</creatorcontrib><creatorcontrib>Murthy, Jayathi Y</creatorcontrib><creatorcontrib>Ruan, Xiulin</creatorcontrib><title>Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators</title><title>Journal of vibration and acoustics</title><addtitle>J. Vib. Acoust</addtitle><description>This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems.</description><issn>1048-9002</issn><issn>1528-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkD1PAzEQRC0EEiFQUNO4pbiwXvsudokCgUgJSHzUls-3hosSO7IvBf-eoFDNFE-j0WPsWsBECFHfiYkClFBPT9hI1KgrbXB6euigdGUA8JxdlLIGEFLW9YjNHyiQH6pF7PaeOr4i_-1i792Gr1JH_H236Yehj1-8j3zmcpsif3ExDfuW-BuVFN2QcrlkZ8FtCl3955h9zh8_Zs_V8vVpMbtfVg6VGSolkRpDJhgPmupGIwGo0Had0kGGFgyiEBgMOXSe_NR0ppEoDXhoGifkmN0ed31OpWQKdpf7rcs_VoD9E2CF_RdwYG-OrCtbsuu0z_FwzUoNCEr-AjROVXY</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Vallabhaneni, Ajit K</creator><creator>Rhoads, Jeffrey F</creator><creator>Murthy, Jayathi Y</creator><creator>Ruan, Xiulin</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators</title><author>Vallabhaneni, Ajit K ; Rhoads, Jeffrey F ; Murthy, Jayathi Y ; Ruan, Xiulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-432e69e9f9c08e5682e004fbdd48f3fb0922112f9ea2acec79d9632390c066a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallabhaneni, Ajit K</creatorcontrib><creatorcontrib>Rhoads, Jeffrey F</creatorcontrib><creatorcontrib>Murthy, Jayathi Y</creatorcontrib><creatorcontrib>Ruan, Xiulin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vibration and acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallabhaneni, Ajit K</au><au>Rhoads, Jeffrey F</au><au>Murthy, Jayathi Y</au><au>Ruan, Xiulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators</atitle><jtitle>Journal of vibration and acoustics</jtitle><stitle>J. Vib. Acoust</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>135</volume><issue>2</issue><issn>1048-9002</issn><eissn>1528-8927</eissn><abstract>This work examines the impact of defects on the resonant response of single-wall carbon nanotube (CNT) resonators using classical molecular dynamics (MD) simulations. The work demonstrates that the presence of defects in CNTs leads to appreciable resonant mode splitting. A dimensionless parameter has been introduced to quantify this phenomenon. It is observed that increasing the degree of asymmetry in the system generally increases the magnitude of splitting. Given the centrality of single-peak Lorentzian frequency responses in the current device design paradigm, which is utilized in applications such as resonant mass sensing, the non-Lorentzian response characteristics of imperfect devices could present both opportunities and challenges in the future design and development of resonant nanosystems.</abstract><pub>ASME</pub><doi>10.1115/1.4023057</doi></addata></record>
fulltext fulltext
identifier ISSN: 1048-9002
ispartof Journal of vibration and acoustics, 2013-04, Vol.135 (2)
issn 1048-9002
1528-8927
language eng
recordid cdi_crossref_primary_10_1115_1_4023057
source ASME Transactions Journals (Current); Alma/SFX Local Collection
title Defect-Induced Mechanical Mode Splitting in Carbon Nanotube Resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-Induced%20Mechanical%20Mode%20Splitting%20in%20Carbon%20Nanotube%20Resonators&rft.jtitle=Journal%20of%20vibration%20and%20acoustics&rft.au=Vallabhaneni,%20Ajit%20K&rft.date=2013-04-01&rft.volume=135&rft.issue=2&rft.issn=1048-9002&rft.eissn=1528-8927&rft_id=info:doi/10.1115/1.4023057&rft_dat=%3Casme_cross%3E380204%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true