Critical Heat Flux in Submerged Jet Impingement Boiling of Water Under Subatmospheric Conditions

Critical heat flux (CHF) characteristics in submerged jet impingement boiling of water on a heated copper surface are investigated at subatmospheric conditions. Data are reported at a fixed surface-to-nozzle diameter ratio of 23.8 and a fixed surface-to-nozzle height of 6 nozzle diameters. Three sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2012-08, Vol.134 (8)
Hauptverfasser: Cardenas, Ruander, Narayanan, Vinod
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of heat transfer
container_volume 134
creator Cardenas, Ruander
Narayanan, Vinod
description Critical heat flux (CHF) characteristics in submerged jet impingement boiling of water on a heated copper surface are investigated at subatmospheric conditions. Data are reported at a fixed surface-to-nozzle diameter ratio of 23.8 and a fixed surface-to-nozzle height of 6 nozzle diameters. Three subatmospheric pressures of 0.176 bars, 0.276 bars, and 0.477 bars are considered, corresponding to fluid saturation temperatures of 57.3 °C, 67.2 °C, and 80.2 °C and liquid-to-vapor density ratios of 8502, 5544, and 3295, respectively. At each pressure, CHF for varying jet Reynolds numbers (Re) in the range 0–14,000 are compared for two different surface finishes of roughness average values of 123 nm and 33 nm. The CHF enhancement observed with increasing Re is depicted in a nondimensional CHF map. Existing correlations available in the literature, which are out of range of the current experimental conditions, are found to poorly predict the obtained CHF data. A CHF correlation that captures the entire experimental data set within an average error of ±3% and a maximum error of ±13% is developed. The effect of fluid subcooling on submerged jet CHF is studied at the lowest pressure of 0.176 bars. Subcooled jet CHF is found to be well predicted from saturated jet CHF by using a typical subcooled pool boiling CHF correction factor.
doi_str_mv 10.1115/1.4006206
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4006206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>468087</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-a18fab33ad3593de948d32e210a68d83c9921b7d18a08b387d27aac9c606dd2e3</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqUwMLN4YWBI8bPTxB4horSoEgNUjOEldoqrxInsVIJ_j1Erlnd60ncn3RFyDWwGAPN7mKWMZZxlJ2QCcy4TqVJxSiaMcZ5AKuGcXISwYwyESNWEfBbejrbGli4NjnTR7r-pdfRtX3XGb42mL2akq26wbms640b62Ns2PrRv6AeOxtON0_FGA45dH4Yv421Ni97pmNu7cEnOGmyDuTrqlGwWT-_FMlm_Pq-Kh3WCPFdjgiAbrIRALeZKaKNSqQU3HBhmUktRK8WhyjVIZLISMtc8R6xVnbFMa27ElNwdcmvfh-BNUw7eduh_SmDl3zQllMdpInt7YAcMsXrj0dU2_Bt4BqnIFYvczYHD0Jly1--9ixXKNJNM5uIXHjJsLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical Heat Flux in Submerged Jet Impingement Boiling of Water Under Subatmospheric Conditions</title><source>ASME Transactions Journals (Current)</source><creator>Cardenas, Ruander ; Narayanan, Vinod</creator><creatorcontrib>Cardenas, Ruander ; Narayanan, Vinod</creatorcontrib><description>Critical heat flux (CHF) characteristics in submerged jet impingement boiling of water on a heated copper surface are investigated at subatmospheric conditions. Data are reported at a fixed surface-to-nozzle diameter ratio of 23.8 and a fixed surface-to-nozzle height of 6 nozzle diameters. Three subatmospheric pressures of 0.176 bars, 0.276 bars, and 0.477 bars are considered, corresponding to fluid saturation temperatures of 57.3 °C, 67.2 °C, and 80.2 °C and liquid-to-vapor density ratios of 8502, 5544, and 3295, respectively. At each pressure, CHF for varying jet Reynolds numbers (Re) in the range 0–14,000 are compared for two different surface finishes of roughness average values of 123 nm and 33 nm. The CHF enhancement observed with increasing Re is depicted in a nondimensional CHF map. Existing correlations available in the literature, which are out of range of the current experimental conditions, are found to poorly predict the obtained CHF data. A CHF correlation that captures the entire experimental data set within an average error of ±3% and a maximum error of ±13% is developed. The effect of fluid subcooling on submerged jet CHF is studied at the lowest pressure of 0.176 bars. Subcooled jet CHF is found to be well predicted from saturated jet CHF by using a typical subcooled pool boiling CHF correction factor.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4006206</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Design. Technologies. Operation analysis. Testing ; Electronics ; Evaporation, Boiling, and Condensation ; Exact sciences and technology ; Integrated circuits ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of heat transfer, 2012-08, Vol.134 (8)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-a18fab33ad3593de948d32e210a68d83c9921b7d18a08b387d27aac9c606dd2e3</citedby><cites>FETCH-LOGICAL-a279t-a18fab33ad3593de948d32e210a68d83c9921b7d18a08b387d27aac9c606dd2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26143790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardenas, Ruander</creatorcontrib><creatorcontrib>Narayanan, Vinod</creatorcontrib><title>Critical Heat Flux in Submerged Jet Impingement Boiling of Water Under Subatmospheric Conditions</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>Critical heat flux (CHF) characteristics in submerged jet impingement boiling of water on a heated copper surface are investigated at subatmospheric conditions. Data are reported at a fixed surface-to-nozzle diameter ratio of 23.8 and a fixed surface-to-nozzle height of 6 nozzle diameters. Three subatmospheric pressures of 0.176 bars, 0.276 bars, and 0.477 bars are considered, corresponding to fluid saturation temperatures of 57.3 °C, 67.2 °C, and 80.2 °C and liquid-to-vapor density ratios of 8502, 5544, and 3295, respectively. At each pressure, CHF for varying jet Reynolds numbers (Re) in the range 0–14,000 are compared for two different surface finishes of roughness average values of 123 nm and 33 nm. The CHF enhancement observed with increasing Re is depicted in a nondimensional CHF map. Existing correlations available in the literature, which are out of range of the current experimental conditions, are found to poorly predict the obtained CHF data. A CHF correlation that captures the entire experimental data set within an average error of ±3% and a maximum error of ±13% is developed. The effect of fluid subcooling on submerged jet CHF is studied at the lowest pressure of 0.176 bars. Subcooled jet CHF is found to be well predicted from saturated jet CHF by using a typical subcooled pool boiling CHF correction factor.</description><subject>Applied sciences</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Evaporation, Boiling, and Condensation</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EEqUwMLN4YWBI8bPTxB4horSoEgNUjOEldoqrxInsVIJ_j1Erlnd60ncn3RFyDWwGAPN7mKWMZZxlJ2QCcy4TqVJxSiaMcZ5AKuGcXISwYwyESNWEfBbejrbGli4NjnTR7r-pdfRtX3XGb42mL2akq26wbms640b62Ns2PrRv6AeOxtON0_FGA45dH4Yv421Ni97pmNu7cEnOGmyDuTrqlGwWT-_FMlm_Pq-Kh3WCPFdjgiAbrIRALeZKaKNSqQU3HBhmUktRK8WhyjVIZLISMtc8R6xVnbFMa27ElNwdcmvfh-BNUw7eduh_SmDl3zQllMdpInt7YAcMsXrj0dU2_Bt4BqnIFYvczYHD0Jly1--9ixXKNJNM5uIXHjJsLQ</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Cardenas, Ruander</creator><creator>Narayanan, Vinod</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120801</creationdate><title>Critical Heat Flux in Submerged Jet Impingement Boiling of Water Under Subatmospheric Conditions</title><author>Cardenas, Ruander ; Narayanan, Vinod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-a18fab33ad3593de948d32e210a68d83c9921b7d18a08b387d27aac9c606dd2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Evaporation, Boiling, and Condensation</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardenas, Ruander</creatorcontrib><creatorcontrib>Narayanan, Vinod</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardenas, Ruander</au><au>Narayanan, Vinod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Heat Flux in Submerged Jet Impingement Boiling of Water Under Subatmospheric Conditions</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>134</volume><issue>8</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>Critical heat flux (CHF) characteristics in submerged jet impingement boiling of water on a heated copper surface are investigated at subatmospheric conditions. Data are reported at a fixed surface-to-nozzle diameter ratio of 23.8 and a fixed surface-to-nozzle height of 6 nozzle diameters. Three subatmospheric pressures of 0.176 bars, 0.276 bars, and 0.477 bars are considered, corresponding to fluid saturation temperatures of 57.3 °C, 67.2 °C, and 80.2 °C and liquid-to-vapor density ratios of 8502, 5544, and 3295, respectively. At each pressure, CHF for varying jet Reynolds numbers (Re) in the range 0–14,000 are compared for two different surface finishes of roughness average values of 123 nm and 33 nm. The CHF enhancement observed with increasing Re is depicted in a nondimensional CHF map. Existing correlations available in the literature, which are out of range of the current experimental conditions, are found to poorly predict the obtained CHF data. A CHF correlation that captures the entire experimental data set within an average error of ±3% and a maximum error of ±13% is developed. The effect of fluid subcooling on submerged jet CHF is studied at the lowest pressure of 0.176 bars. Subcooled jet CHF is found to be well predicted from saturated jet CHF by using a typical subcooled pool boiling CHF correction factor.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.4006206</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2012-08, Vol.134 (8)
issn 0022-1481
1528-8943
language eng
recordid cdi_crossref_primary_10_1115_1_4006206
source ASME Transactions Journals (Current)
subjects Applied sciences
Design. Technologies. Operation analysis. Testing
Electronics
Evaporation, Boiling, and Condensation
Exact sciences and technology
Integrated circuits
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Critical Heat Flux in Submerged Jet Impingement Boiling of Water Under Subatmospheric Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Heat%20Flux%20in%20Submerged%20Jet%20Impingement%20Boiling%20of%20Water%20Under%20Subatmospheric%20Conditions&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Cardenas,%20Ruander&rft.date=2012-08-01&rft.volume=134&rft.issue=8&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.4006206&rft_dat=%3Casme_cross%3E468087%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true