The Brayton Cycle Using Real Air and Polytropic Component Efficiencies

This paper presents the results of a fundamental, comprehensive, and rigorous analytical and computational examination of the performance of the Brayton propulsion and power cycle employing real air as the working fluid. This approach capitalizes on the benefits inherent in closed cycle thermodynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2011-11, Vol.133 (11)
Hauptverfasser: Heiser, W. H, Huxley, T, Bucey, J. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of engineering for gas turbines and power
container_volume 133
creator Heiser, W. H
Huxley, T
Bucey, J. W
description This paper presents the results of a fundamental, comprehensive, and rigorous analytical and computational examination of the performance of the Brayton propulsion and power cycle employing real air as the working fluid. This approach capitalizes on the benefits inherent in closed cycle thermodynamic reasoning and the behavior of the thermally perfect gas to facilitate analysis. The analysis uses a high fidelity correlation to represent the specific heat at constant pressure of air as a function of temperature and the polytropic efficiency to evaluate the overall efficiency of the adiabatic compression and expansion processes. The analytical results are algebraic, transparent, and easily manipulated, and the computational results present a useful guidance for designers and users. The operating range of design parameters considered covers any current and foreseeable application. The results include some important comparisons with more simplified conventional analyses.
doi_str_mv 10.1115/1.4003671
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4003671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>465462</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-ed314b9184ec4145b30db3679624b980ee9f1400ce6e6f4d020ef47221da57093</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqUwMLN4YWBI8Tl2HI8lagGpEgi1s-UkZ0iVJpEdhvx7XLViOJ10-u7pvUfIPbAFAMhnWAjG0kzBBZmB5HmSa9CXZMaU4IlQWl6TmxD2jEGaCjUj6-0P0hdvp7HvaDFVLdJdaLpv-oW2pcvGU9vV9LNvp9H3Q1PRoj8MfYfdSFfONVWDXZxwS66cbQPenfec7NarbfGWbD5e34vlJrFc6THBOgVRasgFVgKELFNWl9Gtzng85wxRO4gBKswwc6JmnKETinOorVRMp3PydNKtfB-CR2cG3xysnwwwcyzAgDkXENnHEzvYUNnWeRuthv8HLpSQuTpqPpw4Gw5o9v2v72IEIzIpMp7-ATPEYaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Brayton Cycle Using Real Air and Polytropic Component Efficiencies</title><source>ASME Transactions Journals (Current)</source><creator>Heiser, W. H ; Huxley, T ; Bucey, J. W</creator><creatorcontrib>Heiser, W. H ; Huxley, T ; Bucey, J. W</creatorcontrib><description>This paper presents the results of a fundamental, comprehensive, and rigorous analytical and computational examination of the performance of the Brayton propulsion and power cycle employing real air as the working fluid. This approach capitalizes on the benefits inherent in closed cycle thermodynamic reasoning and the behavior of the thermally perfect gas to facilitate analysis. The analysis uses a high fidelity correlation to represent the specific heat at constant pressure of air as a function of temperature and the polytropic efficiency to evaluate the overall efficiency of the adiabatic compression and expansion processes. The analytical results are algebraic, transparent, and easily manipulated, and the computational results present a useful guidance for designers and users. The operating range of design parameters considered covers any current and foreseeable application. The results include some important comparisons with more simplified conventional analyses.</description><identifier>ISSN: 0742-4795</identifier><identifier>EISSN: 1528-8919</identifier><identifier>DOI: 10.1115/1.4003671</identifier><identifier>CODEN: JETPEZ</identifier><language>eng</language><publisher>New York, Ny: ASME</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Gas Turbines: Cycle Innovations</subject><ispartof>Journal of engineering for gas turbines and power, 2011-11, Vol.133 (11)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-ed314b9184ec4145b30db3679624b980ee9f1400ce6e6f4d020ef47221da57093</citedby><cites>FETCH-LOGICAL-a279t-ed314b9184ec4145b30db3679624b980ee9f1400ce6e6f4d020ef47221da57093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38501</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24745879$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heiser, W. H</creatorcontrib><creatorcontrib>Huxley, T</creatorcontrib><creatorcontrib>Bucey, J. W</creatorcontrib><title>The Brayton Cycle Using Real Air and Polytropic Component Efficiencies</title><title>Journal of engineering for gas turbines and power</title><addtitle>J. Eng. Gas Turbines Power</addtitle><description>This paper presents the results of a fundamental, comprehensive, and rigorous analytical and computational examination of the performance of the Brayton propulsion and power cycle employing real air as the working fluid. This approach capitalizes on the benefits inherent in closed cycle thermodynamic reasoning and the behavior of the thermally perfect gas to facilitate analysis. The analysis uses a high fidelity correlation to represent the specific heat at constant pressure of air as a function of temperature and the polytropic efficiency to evaluate the overall efficiency of the adiabatic compression and expansion processes. The analytical results are algebraic, transparent, and easily manipulated, and the computational results present a useful guidance for designers and users. The operating range of design parameters considered covers any current and foreseeable application. The results include some important comparisons with more simplified conventional analyses.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Gas Turbines: Cycle Innovations</subject><issn>0742-4795</issn><issn>1528-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqUwMLN4YWBI8Tl2HI8lagGpEgi1s-UkZ0iVJpEdhvx7XLViOJ10-u7pvUfIPbAFAMhnWAjG0kzBBZmB5HmSa9CXZMaU4IlQWl6TmxD2jEGaCjUj6-0P0hdvp7HvaDFVLdJdaLpv-oW2pcvGU9vV9LNvp9H3Q1PRoj8MfYfdSFfONVWDXZxwS66cbQPenfec7NarbfGWbD5e34vlJrFc6THBOgVRasgFVgKELFNWl9Gtzng85wxRO4gBKswwc6JmnKETinOorVRMp3PydNKtfB-CR2cG3xysnwwwcyzAgDkXENnHEzvYUNnWeRuthv8HLpSQuTpqPpw4Gw5o9v2v72IEIzIpMp7-ATPEYaE</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Heiser, W. H</creator><creator>Huxley, T</creator><creator>Bucey, J. W</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111101</creationdate><title>The Brayton Cycle Using Real Air and Polytropic Component Efficiencies</title><author>Heiser, W. H ; Huxley, T ; Bucey, J. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-ed314b9184ec4145b30db3679624b980ee9f1400ce6e6f4d020ef47221da57093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Gas Turbines: Cycle Innovations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heiser, W. H</creatorcontrib><creatorcontrib>Huxley, T</creatorcontrib><creatorcontrib>Bucey, J. W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of engineering for gas turbines and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heiser, W. H</au><au>Huxley, T</au><au>Bucey, J. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Brayton Cycle Using Real Air and Polytropic Component Efficiencies</atitle><jtitle>Journal of engineering for gas turbines and power</jtitle><stitle>J. Eng. Gas Turbines Power</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>133</volume><issue>11</issue><issn>0742-4795</issn><eissn>1528-8919</eissn><coden>JETPEZ</coden><abstract>This paper presents the results of a fundamental, comprehensive, and rigorous analytical and computational examination of the performance of the Brayton propulsion and power cycle employing real air as the working fluid. This approach capitalizes on the benefits inherent in closed cycle thermodynamic reasoning and the behavior of the thermally perfect gas to facilitate analysis. The analysis uses a high fidelity correlation to represent the specific heat at constant pressure of air as a function of temperature and the polytropic efficiency to evaluate the overall efficiency of the adiabatic compression and expansion processes. The analytical results are algebraic, transparent, and easily manipulated, and the computational results present a useful guidance for designers and users. The operating range of design parameters considered covers any current and foreseeable application. The results include some important comparisons with more simplified conventional analyses.</abstract><cop>New York, Ny</cop><pub>ASME</pub><doi>10.1115/1.4003671</doi></addata></record>
fulltext fulltext
identifier ISSN: 0742-4795
ispartof Journal of engineering for gas turbines and power, 2011-11, Vol.133 (11)
issn 0742-4795
1528-8919
language eng
recordid cdi_crossref_primary_10_1115_1_4003671
source ASME Transactions Journals (Current)
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Gas Turbines: Cycle Innovations
title The Brayton Cycle Using Real Air and Polytropic Component Efficiencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Brayton%20Cycle%20Using%20Real%20Air%20and%20Polytropic%20Component%20Efficiencies&rft.jtitle=Journal%20of%20engineering%20for%20gas%20turbines%20and%20power&rft.au=Heiser,%20W.%20H&rft.date=2011-11-01&rft.volume=133&rft.issue=11&rft.issn=0742-4795&rft.eissn=1528-8919&rft.coden=JETPEZ&rft_id=info:doi/10.1115/1.4003671&rft_dat=%3Casme_cross%3E465462%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true