Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2010-04, Vol.132 (4)
Hauptverfasser: Kim, Yoon Jo, Joshi, Yogendra K, Fedorov, Andrei G, Lee, Young-Joon, Lim, Sung-Kyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of heat transfer
container_volume 132
creator Kim, Yoon Jo
Joshi, Yogendra K
Fedorov, Andrei G
Lee, Young-Joon
Lim, Sung-Kyu
description It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.
doi_str_mv 10.1115/1.4000885
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4000885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>467892</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-993863e0a871e2f87988970a4bf9ccb940c3d12eb144a79f46f3838d1714d2303</originalsourceid><addsrcrecordid>eNotkDFPwzAUhC0EEqUwMLN4ZUjxs93GHlGgtFKBpYgxch27cZXEyHYk2oHfTqp2Op303Ul3CN0DmQDA9AkmnBAixPQCjWBKRSYkZ5doRAilGXAB1-gmxh0hwBiXI_S3rk1oVYOLWgWlkwnuoJLzHfYWL7vBN2pvAn53Onjb9K5yGhfeN67bHpF1HYzJXlxrujikhqJjaBtUMhUuXNC9SxF_u1TjD9_1nbM-tHhhVMLzpv-9RVdWNdHcnXWMvuav62KRrT7flsXzKlOUy5RJycSMGaJEDoZakUshZE4U31ip9UZyolkF1GyAc5VLy2eWCSYqyIFXlBE2Ro-n3mFFjMHY8ie4VoV9CaQ8HldCeT5uYB9OrIqtKXe-D8OsWPJZLiRl_4OFanU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux</title><source>ASME Transactions Journals (Current)</source><creator>Kim, Yoon Jo ; Joshi, Yogendra K ; Fedorov, Andrei G ; Lee, Young-Joon ; Lim, Sung-Kyu</creator><creatorcontrib>Kim, Yoon Jo ; Joshi, Yogendra K ; Fedorov, Andrei G ; Lee, Young-Joon ; Lim, Sung-Kyu</creatorcontrib><description>It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4000885</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of heat transfer, 2010-04, Vol.132 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-993863e0a871e2f87988970a4bf9ccb940c3d12eb144a79f46f3838d1714d2303</citedby><cites>FETCH-LOGICAL-a249t-993863e0a871e2f87988970a4bf9ccb940c3d12eb144a79f46f3838d1714d2303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,38519</link.rule.ids></links><search><creatorcontrib>Kim, Yoon Jo</creatorcontrib><creatorcontrib>Joshi, Yogendra K</creatorcontrib><creatorcontrib>Fedorov, Andrei G</creatorcontrib><creatorcontrib>Lee, Young-Joon</creatorcontrib><creatorcontrib>Lim, Sung-Kyu</creatorcontrib><title>Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.</description><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAUhC0EEqUwMLN4ZUjxs93GHlGgtFKBpYgxch27cZXEyHYk2oHfTqp2Op303Ul3CN0DmQDA9AkmnBAixPQCjWBKRSYkZ5doRAilGXAB1-gmxh0hwBiXI_S3rk1oVYOLWgWlkwnuoJLzHfYWL7vBN2pvAn53Onjb9K5yGhfeN67bHpF1HYzJXlxrujikhqJjaBtUMhUuXNC9SxF_u1TjD9_1nbM-tHhhVMLzpv-9RVdWNdHcnXWMvuav62KRrT7flsXzKlOUy5RJycSMGaJEDoZakUshZE4U31ip9UZyolkF1GyAc5VLy2eWCSYqyIFXlBE2Ro-n3mFFjMHY8ie4VoV9CaQ8HldCeT5uYB9OrIqtKXe-D8OsWPJZLiRl_4OFanU</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Kim, Yoon Jo</creator><creator>Joshi, Yogendra K</creator><creator>Fedorov, Andrei G</creator><creator>Lee, Young-Joon</creator><creator>Lim, Sung-Kyu</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100401</creationdate><title>Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux</title><author>Kim, Yoon Jo ; Joshi, Yogendra K ; Fedorov, Andrei G ; Lee, Young-Joon ; Lim, Sung-Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-993863e0a871e2f87988970a4bf9ccb940c3d12eb144a79f46f3838d1714d2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yoon Jo</creatorcontrib><creatorcontrib>Joshi, Yogendra K</creatorcontrib><creatorcontrib>Fedorov, Andrei G</creatorcontrib><creatorcontrib>Lee, Young-Joon</creatorcontrib><creatorcontrib>Lim, Sung-Kyu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yoon Jo</au><au>Joshi, Yogendra K</au><au>Fedorov, Andrei G</au><au>Lee, Young-Joon</au><au>Lim, Sung-Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>132</volume><issue>4</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><abstract>It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.</abstract><pub>ASME</pub><doi>10.1115/1.4000885</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2010-04, Vol.132 (4)
issn 0022-1481
1528-8943
language eng
recordid cdi_crossref_primary_10_1115_1_4000885
source ASME Transactions Journals (Current)
title Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Characterization%20of%20Interlayer%20Microfluidic%20Cooling%20of%20Three-Dimensional%20Integrated%20Circuits%20With%20Nonuniform%20Heat%20Flux&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Kim,%20Yoon%20Jo&rft.date=2010-04-01&rft.volume=132&rft.issue=4&rft.issn=0022-1481&rft.eissn=1528-8943&rft_id=info:doi/10.1115/1.4000885&rft_dat=%3Casme_cross%3E467892%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true