Three-Stream Flamelet Model for Industrial Applications

Efficient turbulent combustion models are typically designed for the numerical simulation of two-stream problems, namely, the combustion of fuel in air. There are applications, however, where large amounts of a diluent such as water steam or recirculated exhaust gas is supplied to the combustor inde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2010-06, Vol.132 (6)
Hauptverfasser: Riechelmann, Dirk, Uchida, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of engineering for gas turbines and power
container_volume 132
creator Riechelmann, Dirk
Uchida, Masahiro
description Efficient turbulent combustion models are typically designed for the numerical simulation of two-stream problems, namely, the combustion of fuel in air. There are applications, however, where large amounts of a diluent such as water steam or recirculated exhaust gas is supplied to the combustor independent of fuel and air supplies. In such cases, classical approaches become quite time-consuming. In the present paper, a new three-stream flamelet model is presented, which is essentially an extension of the two-stream flamelet model for diffusion flames. Key points of the approach are the introduction of a second mixture fraction variable and the efficient establishment of the flamelet library. After presentation of the theory, the applicability of the new model is demonstrated by comparison with experimental results for the lift-off height of jet diffusion flames.
doi_str_mv 10.1115/1.4000247
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4000247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>465488</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-2ffea4661092e135c593f23888cd662cdc9b71cf246d3f6ba646f73530c0ce983</originalsourceid><addsrcrecordid>eNo9zztPwzAUhmELgUQoDMwsWRgYUnx891hVFCoVMVBmy3Vskcq5yE4H_j1BqZjO8pxPehG6B7wEAP4MS4YxJkxeoAI4UZXSoC9RgSUjFZOaX6ObnI8YA6VMFkjuv5P31eeYvG3LTbStj34s3_vaxzL0qdx29SmPqbGxXA1DbJwdm77Lt-gq2Jj93fku0NfmZb9-q3Yfr9v1aldZIvVYkRC8ZUIA1sQD5Y5rGghVSrlaCOJqpw8SXCBM1DSIgxVMBEk5xQ47rxVdoKd516U-5-SDGVLT2vRjAJu_YgPmXDzZx9kONjsbQ7Kda_L_AyGKUEnF5B5mZ3PrzbE_pW5KMExwphT9BUngXQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-Stream Flamelet Model for Industrial Applications</title><source>ASME Transactions Journals (Current)</source><creator>Riechelmann, Dirk ; Uchida, Masahiro</creator><creatorcontrib>Riechelmann, Dirk ; Uchida, Masahiro</creatorcontrib><description>Efficient turbulent combustion models are typically designed for the numerical simulation of two-stream problems, namely, the combustion of fuel in air. There are applications, however, where large amounts of a diluent such as water steam or recirculated exhaust gas is supplied to the combustor independent of fuel and air supplies. In such cases, classical approaches become quite time-consuming. In the present paper, a new three-stream flamelet model is presented, which is essentially an extension of the two-stream flamelet model for diffusion flames. Key points of the approach are the introduction of a second mixture fraction variable and the efficient establishment of the flamelet library. After presentation of the theory, the applicability of the new model is demonstrated by comparison with experimental results for the lift-off height of jet diffusion flames.</description><identifier>ISSN: 0742-4795</identifier><identifier>EISSN: 1528-8919</identifier><identifier>DOI: 10.1115/1.4000247</identifier><identifier>CODEN: JETPEZ</identifier><language>eng</language><publisher>New York, N: ASME</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Gas Turbines: Combustion, Fuels, and Emissions</subject><ispartof>Journal of engineering for gas turbines and power, 2010-06, Vol.132 (6)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-2ffea4661092e135c593f23888cd662cdc9b71cf246d3f6ba646f73530c0ce983</citedby><cites>FETCH-LOGICAL-a279t-2ffea4661092e135c593f23888cd662cdc9b71cf246d3f6ba646f73530c0ce983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,38519</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22823736$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Riechelmann, Dirk</creatorcontrib><creatorcontrib>Uchida, Masahiro</creatorcontrib><title>Three-Stream Flamelet Model for Industrial Applications</title><title>Journal of engineering for gas turbines and power</title><addtitle>J. Eng. Gas Turbines Power</addtitle><description>Efficient turbulent combustion models are typically designed for the numerical simulation of two-stream problems, namely, the combustion of fuel in air. There are applications, however, where large amounts of a diluent such as water steam or recirculated exhaust gas is supplied to the combustor independent of fuel and air supplies. In such cases, classical approaches become quite time-consuming. In the present paper, a new three-stream flamelet model is presented, which is essentially an extension of the two-stream flamelet model for diffusion flames. Key points of the approach are the introduction of a second mixture fraction variable and the efficient establishment of the flamelet library. After presentation of the theory, the applicability of the new model is demonstrated by comparison with experimental results for the lift-off height of jet diffusion flames.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Gas Turbines: Combustion, Fuels, and Emissions</subject><issn>0742-4795</issn><issn>1528-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9zztPwzAUhmELgUQoDMwsWRgYUnx891hVFCoVMVBmy3Vskcq5yE4H_j1BqZjO8pxPehG6B7wEAP4MS4YxJkxeoAI4UZXSoC9RgSUjFZOaX6ObnI8YA6VMFkjuv5P31eeYvG3LTbStj34s3_vaxzL0qdx29SmPqbGxXA1DbJwdm77Lt-gq2Jj93fku0NfmZb9-q3Yfr9v1aldZIvVYkRC8ZUIA1sQD5Y5rGghVSrlaCOJqpw8SXCBM1DSIgxVMBEk5xQ47rxVdoKd516U-5-SDGVLT2vRjAJu_YgPmXDzZx9kONjsbQ7Kda_L_AyGKUEnF5B5mZ3PrzbE_pW5KMExwphT9BUngXQg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Riechelmann, Dirk</creator><creator>Uchida, Masahiro</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100601</creationdate><title>Three-Stream Flamelet Model for Industrial Applications</title><author>Riechelmann, Dirk ; Uchida, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-2ffea4661092e135c593f23888cd662cdc9b71cf246d3f6ba646f73530c0ce983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Gas Turbines: Combustion, Fuels, and Emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riechelmann, Dirk</creatorcontrib><creatorcontrib>Uchida, Masahiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of engineering for gas turbines and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riechelmann, Dirk</au><au>Uchida, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Stream Flamelet Model for Industrial Applications</atitle><jtitle>Journal of engineering for gas turbines and power</jtitle><stitle>J. Eng. Gas Turbines Power</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>132</volume><issue>6</issue><issn>0742-4795</issn><eissn>1528-8919</eissn><coden>JETPEZ</coden><abstract>Efficient turbulent combustion models are typically designed for the numerical simulation of two-stream problems, namely, the combustion of fuel in air. There are applications, however, where large amounts of a diluent such as water steam or recirculated exhaust gas is supplied to the combustor independent of fuel and air supplies. In such cases, classical approaches become quite time-consuming. In the present paper, a new three-stream flamelet model is presented, which is essentially an extension of the two-stream flamelet model for diffusion flames. Key points of the approach are the introduction of a second mixture fraction variable and the efficient establishment of the flamelet library. After presentation of the theory, the applicability of the new model is demonstrated by comparison with experimental results for the lift-off height of jet diffusion flames.</abstract><cop>New York, N</cop><pub>ASME</pub><doi>10.1115/1.4000247</doi></addata></record>
fulltext fulltext
identifier ISSN: 0742-4795
ispartof Journal of engineering for gas turbines and power, 2010-06, Vol.132 (6)
issn 0742-4795
1528-8919
language eng
recordid cdi_crossref_primary_10_1115_1_4000247
source ASME Transactions Journals (Current)
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Gas Turbines: Combustion, Fuels, and Emissions
title Three-Stream Flamelet Model for Industrial Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Stream%20Flamelet%20Model%20for%20Industrial%20Applications&rft.jtitle=Journal%20of%20engineering%20for%20gas%20turbines%20and%20power&rft.au=Riechelmann,%20Dirk&rft.date=2010-06-01&rft.volume=132&rft.issue=6&rft.issn=0742-4795&rft.eissn=1528-8919&rft.coden=JETPEZ&rft_id=info:doi/10.1115/1.4000247&rft_dat=%3Casme_cross%3E465488%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true