TI Low-Leakage130nm Digital Process with Nonvolatile FRAM for Ultra-Low-Power Medical Electronics

Both external and implantable devices are becoming more sophisticated and are requiring more on-chip memory to store data from biological sensors. To deal with this complexity, chip designs are moving toward smaller process geometries, which provide added functionality, reduced size, or both, often...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical devices 2008-06, Vol.2 (2)
Hauptverfasser: Landers, A. Robert, Elkind, B. Jerry, Aggarwal, C. Rajni
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of medical devices
container_volume 2
creator Landers, A. Robert
Elkind, B. Jerry
Aggarwal, C. Rajni
description Both external and implantable devices are becoming more sophisticated and are requiring more on-chip memory to store data from biological sensors. To deal with this complexity, chip designs are moving toward smaller process geometries, which provide added functionality, reduced size, or both, often along with a reduction in dynamic power. However, leakage power begins to increase significantly at the 130nm node if steps are not taken to mitigate the increased transistor leakage. Lower operating voltages and careful transistor design can offset some of this increase. These very changes, however, make it difficult to design a dense, stable low-power SRAM. Nonvolatile memories like FRAM (F-RAM) avoid these difficulties and save power by simply turning off the memory when not in use. This is particularly valuable since many medical devices have very low duty cycle. FRAM provides the added benefit of providing SRAM-like active power, unlike competing nonvolatile technologies. To meet the challenging power requirements of medical devices, a new ultra-low-power 130nm process has been developed. The new process includes a very-high-density, SER-resistant, nonvolatile FRAM and an ultra-low-leakage transistor, coupled with a library that is optimized for low-power operation. This paper compares the power, area and performance of competing process technologies for a typical implantable medical design and highlights the advantages that FRAM provides in low static power through a transparent power-down capability and in low SRAM-like active power.
doi_str_mv 10.1115/1.2932427
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_2932427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>366032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1597-5130d1a75db582f1a95913e9f4eb55d36d13f564629c9b2d248de8044f97bc823</originalsourceid><addsrcrecordid>eNo9UM1PwjAcbYwmInrw7KVXD8P92rVbjwRBSYYSA4m3pesHFsdq2inxv3cE4um9w_vKQ-gW0hEAsAcYEUFJRvIzNICeJRzE-_k_L-ASXcW4TVNGKeEDJFdzXPp9Uhr5KTcGaNru8KPbuE42eBm8MjHives-8Itvf3wjO9cYPHsbL7D1Aa-bLsjkELD0exPwwmineue0MaoLvnUqXqMLK5tobk44ROvZdDV5TsrXp_lkXCYSmMgT1ldrkDnTNSuIBSmYAGqEzUzNmKZcA7WMZ5wIJWqiSVZoU6RZZkVeq4LQIbo_5qrgYwzGVl_B7WT4rSCtDt9UUJ2-6bV3R62MO1Nt_Xdo-2kV5TylhP4BNZld0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TI Low-Leakage130nm Digital Process with Nonvolatile FRAM for Ultra-Low-Power Medical Electronics</title><source>ASME Transactions Journals (Current)</source><creator>Landers, A. Robert ; Elkind, B. Jerry ; Aggarwal, C. Rajni</creator><creatorcontrib>Landers, A. Robert ; Elkind, B. Jerry ; Aggarwal, C. Rajni</creatorcontrib><description>Both external and implantable devices are becoming more sophisticated and are requiring more on-chip memory to store data from biological sensors. To deal with this complexity, chip designs are moving toward smaller process geometries, which provide added functionality, reduced size, or both, often along with a reduction in dynamic power. However, leakage power begins to increase significantly at the 130nm node if steps are not taken to mitigate the increased transistor leakage. Lower operating voltages and careful transistor design can offset some of this increase. These very changes, however, make it difficult to design a dense, stable low-power SRAM. Nonvolatile memories like FRAM (F-RAM) avoid these difficulties and save power by simply turning off the memory when not in use. This is particularly valuable since many medical devices have very low duty cycle. FRAM provides the added benefit of providing SRAM-like active power, unlike competing nonvolatile technologies. To meet the challenging power requirements of medical devices, a new ultra-low-power 130nm process has been developed. The new process includes a very-high-density, SER-resistant, nonvolatile FRAM and an ultra-low-leakage transistor, coupled with a library that is optimized for low-power operation. This paper compares the power, area and performance of competing process technologies for a typical implantable medical design and highlights the advantages that FRAM provides in low static power through a transparent power-down capability and in low SRAM-like active power.</description><identifier>ISSN: 1932-6181</identifier><identifier>EISSN: 1932-619X</identifier><identifier>DOI: 10.1115/1.2932427</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of medical devices, 2008-06, Vol.2 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids></links><search><creatorcontrib>Landers, A. Robert</creatorcontrib><creatorcontrib>Elkind, B. Jerry</creatorcontrib><creatorcontrib>Aggarwal, C. Rajni</creatorcontrib><title>TI Low-Leakage130nm Digital Process with Nonvolatile FRAM for Ultra-Low-Power Medical Electronics</title><title>Journal of medical devices</title><addtitle>J. Med. Devices</addtitle><description>Both external and implantable devices are becoming more sophisticated and are requiring more on-chip memory to store data from biological sensors. To deal with this complexity, chip designs are moving toward smaller process geometries, which provide added functionality, reduced size, or both, often along with a reduction in dynamic power. However, leakage power begins to increase significantly at the 130nm node if steps are not taken to mitigate the increased transistor leakage. Lower operating voltages and careful transistor design can offset some of this increase. These very changes, however, make it difficult to design a dense, stable low-power SRAM. Nonvolatile memories like FRAM (F-RAM) avoid these difficulties and save power by simply turning off the memory when not in use. This is particularly valuable since many medical devices have very low duty cycle. FRAM provides the added benefit of providing SRAM-like active power, unlike competing nonvolatile technologies. To meet the challenging power requirements of medical devices, a new ultra-low-power 130nm process has been developed. The new process includes a very-high-density, SER-resistant, nonvolatile FRAM and an ultra-low-leakage transistor, coupled with a library that is optimized for low-power operation. This paper compares the power, area and performance of competing process technologies for a typical implantable medical design and highlights the advantages that FRAM provides in low static power through a transparent power-down capability and in low SRAM-like active power.</description><issn>1932-6181</issn><issn>1932-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9UM1PwjAcbYwmInrw7KVXD8P92rVbjwRBSYYSA4m3pesHFsdq2inxv3cE4um9w_vKQ-gW0hEAsAcYEUFJRvIzNICeJRzE-_k_L-ASXcW4TVNGKeEDJFdzXPp9Uhr5KTcGaNru8KPbuE42eBm8MjHives-8Itvf3wjO9cYPHsbL7D1Aa-bLsjkELD0exPwwmineue0MaoLvnUqXqMLK5tobk44ROvZdDV5TsrXp_lkXCYSmMgT1ldrkDnTNSuIBSmYAGqEzUzNmKZcA7WMZ5wIJWqiSVZoU6RZZkVeq4LQIbo_5qrgYwzGVl_B7WT4rSCtDt9UUJ2-6bV3R62MO1Nt_Xdo-2kV5TylhP4BNZld0w</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Landers, A. Robert</creator><creator>Elkind, B. Jerry</creator><creator>Aggarwal, C. Rajni</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080601</creationdate><title>TI Low-Leakage130nm Digital Process with Nonvolatile FRAM for Ultra-Low-Power Medical Electronics</title><author>Landers, A. Robert ; Elkind, B. Jerry ; Aggarwal, C. Rajni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1597-5130d1a75db582f1a95913e9f4eb55d36d13f564629c9b2d248de8044f97bc823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landers, A. Robert</creatorcontrib><creatorcontrib>Elkind, B. Jerry</creatorcontrib><creatorcontrib>Aggarwal, C. Rajni</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of medical devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landers, A. Robert</au><au>Elkind, B. Jerry</au><au>Aggarwal, C. Rajni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TI Low-Leakage130nm Digital Process with Nonvolatile FRAM for Ultra-Low-Power Medical Electronics</atitle><jtitle>Journal of medical devices</jtitle><stitle>J. Med. Devices</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>2</volume><issue>2</issue><issn>1932-6181</issn><eissn>1932-619X</eissn><abstract>Both external and implantable devices are becoming more sophisticated and are requiring more on-chip memory to store data from biological sensors. To deal with this complexity, chip designs are moving toward smaller process geometries, which provide added functionality, reduced size, or both, often along with a reduction in dynamic power. However, leakage power begins to increase significantly at the 130nm node if steps are not taken to mitigate the increased transistor leakage. Lower operating voltages and careful transistor design can offset some of this increase. These very changes, however, make it difficult to design a dense, stable low-power SRAM. Nonvolatile memories like FRAM (F-RAM) avoid these difficulties and save power by simply turning off the memory when not in use. This is particularly valuable since many medical devices have very low duty cycle. FRAM provides the added benefit of providing SRAM-like active power, unlike competing nonvolatile technologies. To meet the challenging power requirements of medical devices, a new ultra-low-power 130nm process has been developed. The new process includes a very-high-density, SER-resistant, nonvolatile FRAM and an ultra-low-leakage transistor, coupled with a library that is optimized for low-power operation. This paper compares the power, area and performance of competing process technologies for a typical implantable medical design and highlights the advantages that FRAM provides in low static power through a transparent power-down capability and in low SRAM-like active power.</abstract><pub>ASME</pub><doi>10.1115/1.2932427</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6181
ispartof Journal of medical devices, 2008-06, Vol.2 (2)
issn 1932-6181
1932-619X
language eng
recordid cdi_crossref_primary_10_1115_1_2932427
source ASME Transactions Journals (Current)
title TI Low-Leakage130nm Digital Process with Nonvolatile FRAM for Ultra-Low-Power Medical Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TI%20Low-Leakage130nm%20Digital%20Process%20with%20Nonvolatile%20FRAM%20for%20Ultra-Low-Power%20Medical%20Electronics&rft.jtitle=Journal%20of%20medical%20devices&rft.au=Landers,%20A.%20Robert&rft.date=2008-06-01&rft.volume=2&rft.issue=2&rft.issn=1932-6181&rft.eissn=1932-619X&rft_id=info:doi/10.1115/1.2932427&rft_dat=%3Casme_cross%3E366032%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true