Using voltage-sensor toxins and their molecular targets to investigate Na V 1.8 gating

Voltage-gated sodium (Na ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce anima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2018-05, Vol.596 (10), p.1863-1872
Hauptverfasser: Gilchrist, John, Bosmans, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1872
container_issue 10
container_start_page 1863
container_title The Journal of physiology
container_volume 596
creator Gilchrist, John
Bosmans, Frank
description Voltage-gated sodium (Na ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce animal toxin sensitivity in each VSD of an acceptor channel by transferring in portable S3b-S4 motifs from the four VSDs of a toxin-susceptible donor channel (Na 1.2). By doing so, we observe that in Na 1.8, a relatively unexplored channel subtype with distinctly slow gating kinetics, VSDI-III participate in channel opening whereas VSDIV can regulate opening as well as fast inactivation. These results illustrate the effectiveness of a pharmacological approach to investigate the mechanism underlying gating of a mammalian Na channel complex.
doi_str_mv 10.1113/JP275102
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1113_JP275102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29193176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c956-8d93cc7ab8a9f159d704390bd71ecbe98c40d0372b9f9aab958ff6fb049fc6093</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EoqUg8QXISzYp98ZJnLtEFU9VwKJ0G9mOHYLyqOy0gr8nqJTVaDRHsziMXSLMEVHcPL_FMkWIj9gUk4wiKUkcsylAHEdiXCbsLIRPABRAdMomMSEJlNmUrd9D3VV81zeDqmwUbBd6z4f-q-4CV13Jhw9be972jTXbRo2T8pUdwojwutvZMNSVGix_UXzNcZ7zsY2H5-zEqSbYi7-csdX93WrxGC1fH54Wt8vIUJpFeUnCGKl0rshhSqWERBDoUqI12lJuEihByFiTI6U0pblzmdOQkDMZkJix6_2t8X0I3rpi4-tW-e8Cofg1UxzMjOjVHt1sdWvLf_CgQvwA0p9eGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using voltage-sensor toxins and their molecular targets to investigate Na V 1.8 gating</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gilchrist, John ; Bosmans, Frank</creator><creatorcontrib>Gilchrist, John ; Bosmans, Frank</creatorcontrib><description>Voltage-gated sodium (Na ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce animal toxin sensitivity in each VSD of an acceptor channel by transferring in portable S3b-S4 motifs from the four VSDs of a toxin-susceptible donor channel (Na 1.2). By doing so, we observe that in Na 1.8, a relatively unexplored channel subtype with distinctly slow gating kinetics, VSDI-III participate in channel opening whereas VSDIV can regulate opening as well as fast inactivation. These results illustrate the effectiveness of a pharmacological approach to investigate the mechanism underlying gating of a mammalian Na channel complex.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/JP275102</identifier><identifier>PMID: 29193176</identifier><language>eng</language><publisher>England</publisher><ispartof>The Journal of physiology, 2018-05, Vol.596 (10), p.1863-1872</ispartof><rights>2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c956-8d93cc7ab8a9f159d704390bd71ecbe98c40d0372b9f9aab958ff6fb049fc6093</citedby><cites>FETCH-LOGICAL-c956-8d93cc7ab8a9f159d704390bd71ecbe98c40d0372b9f9aab958ff6fb049fc6093</cites><orcidid>0000-0002-6476-235X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29193176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilchrist, John</creatorcontrib><creatorcontrib>Bosmans, Frank</creatorcontrib><title>Using voltage-sensor toxins and their molecular targets to investigate Na V 1.8 gating</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Voltage-gated sodium (Na ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce animal toxin sensitivity in each VSD of an acceptor channel by transferring in portable S3b-S4 motifs from the four VSDs of a toxin-susceptible donor channel (Na 1.2). By doing so, we observe that in Na 1.8, a relatively unexplored channel subtype with distinctly slow gating kinetics, VSDI-III participate in channel opening whereas VSDIV can regulate opening as well as fast inactivation. These results illustrate the effectiveness of a pharmacological approach to investigate the mechanism underlying gating of a mammalian Na channel complex.</description><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURC0EoqUg8QXISzYp98ZJnLtEFU9VwKJ0G9mOHYLyqOy0gr8nqJTVaDRHsziMXSLMEVHcPL_FMkWIj9gUk4wiKUkcsylAHEdiXCbsLIRPABRAdMomMSEJlNmUrd9D3VV81zeDqmwUbBd6z4f-q-4CV13Jhw9be972jTXbRo2T8pUdwojwutvZMNSVGix_UXzNcZ7zsY2H5-zEqSbYi7-csdX93WrxGC1fH54Wt8vIUJpFeUnCGKl0rshhSqWERBDoUqI12lJuEihByFiTI6U0pblzmdOQkDMZkJix6_2t8X0I3rpi4-tW-e8Cofg1UxzMjOjVHt1sdWvLf_CgQvwA0p9eGw</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Gilchrist, John</creator><creator>Bosmans, Frank</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6476-235X</orcidid></search><sort><creationdate>20180515</creationdate><title>Using voltage-sensor toxins and their molecular targets to investigate Na V 1.8 gating</title><author>Gilchrist, John ; Bosmans, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c956-8d93cc7ab8a9f159d704390bd71ecbe98c40d0372b9f9aab958ff6fb049fc6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilchrist, John</creatorcontrib><creatorcontrib>Bosmans, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilchrist, John</au><au>Bosmans, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using voltage-sensor toxins and their molecular targets to investigate Na V 1.8 gating</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2018-05-15</date><risdate>2018</risdate><volume>596</volume><issue>10</issue><spage>1863</spage><epage>1872</epage><pages>1863-1872</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Voltage-gated sodium (Na ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce animal toxin sensitivity in each VSD of an acceptor channel by transferring in portable S3b-S4 motifs from the four VSDs of a toxin-susceptible donor channel (Na 1.2). By doing so, we observe that in Na 1.8, a relatively unexplored channel subtype with distinctly slow gating kinetics, VSDI-III participate in channel opening whereas VSDIV can regulate opening as well as fast inactivation. These results illustrate the effectiveness of a pharmacological approach to investigate the mechanism underlying gating of a mammalian Na channel complex.</abstract><cop>England</cop><pmid>29193176</pmid><doi>10.1113/JP275102</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6476-235X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2018-05, Vol.596 (10), p.1863-1872
issn 0022-3751
1469-7793
language eng
recordid cdi_crossref_primary_10_1113_JP275102
source Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Using voltage-sensor toxins and their molecular targets to investigate Na V 1.8 gating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20voltage-sensor%20toxins%20and%20their%20molecular%20targets%20to%20investigate%20Na%20V%201.8%20gating&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Gilchrist,%20John&rft.date=2018-05-15&rft.volume=596&rft.issue=10&rft.spage=1863&rft.epage=1872&rft.pages=1863-1872&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/JP275102&rft_dat=%3Cpubmed_cross%3E29193176%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29193176&rfr_iscdi=true