Bowditch's JSJ tree and the quasi‐isometry classification of certain Coxeter groups

Bowditch's JSJ tree for splittings over 2‐ended subgroups is a quasi‐isometry invariant for 1‐ended hyperbolic groups which are not cocompact Fuchsian [Bowditch, Acta Math. 180 (1998) 145–186]. Our main result gives an explicit, computable ‘visual’ construction of this tree for certain hyperbol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of topology 2017-12, Vol.10 (4), p.1066-1106
Hauptverfasser: Dani, Pallavi, Thomas, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 4
container_start_page 1066
container_title Journal of topology
container_volume 10
creator Dani, Pallavi
Thomas, Anne
description Bowditch's JSJ tree for splittings over 2‐ended subgroups is a quasi‐isometry invariant for 1‐ended hyperbolic groups which are not cocompact Fuchsian [Bowditch, Acta Math. 180 (1998) 145–186]. Our main result gives an explicit, computable ‘visual’ construction of this tree for certain hyperbolic right‐angled Coxeter groups. As an application of our construction we identify a large class of such groups for which the JSJ tree, and hence the visual boundary, is a complete quasi‐isometry invariant, and thus the quasi‐isometry problem is decidable. We also give a direct proof of the fact that among the Coxeter groups we consider, the cocompact Fuchsian groups form a rigid quasi‐isometry class. In Appendix B, written jointly with Christopher Cashen, we show that the JSJ tree is not a complete quasi‐isometry invariant for the entire class of Coxeter groups we consider.
doi_str_mv 10.1112/topo.12033
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_topo_12033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TOPO12033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2733-e8c5fe00b61439fabc77546bae7ad1f9a0b1ec16329b219efc51c1e7fced2c43</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYhufILuTEwGe9v5YZZKRCUkmIjrSefOrdQAxbYEZ-cj-Iw-iSDGpatzFt85i4-xcxA9AJBX0a1cD6RQ6oB1oMhU0k9levjXIT9mJyG8CpFvobzDnm_cprERZxeBj55GPHoirpcNjzPib2sd7NfHpw1uQdG3HOc6BGss6mjdkjvDkXzUdskH7p0ief7i3XoVTtmR0fNAZ7_ZZdPh7XRwn4wndw-D63GCslAqoT5mhoSoc0hVaXSNRZGlea2p0A2YUosaCCFXsqwllGQwAwQqDFIjMVVddrm_Re9C8GSqlbcL7dsKRLXzUe18VD8-tjDs4Y2dU_sPWU0nj5P95hv3gmX_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bowditch's JSJ tree and the quasi‐isometry classification of certain Coxeter groups</title><source>Access via Wiley Online Library</source><creator>Dani, Pallavi ; Thomas, Anne</creator><creatorcontrib>Dani, Pallavi ; Thomas, Anne</creatorcontrib><description>Bowditch's JSJ tree for splittings over 2‐ended subgroups is a quasi‐isometry invariant for 1‐ended hyperbolic groups which are not cocompact Fuchsian [Bowditch, Acta Math. 180 (1998) 145–186]. Our main result gives an explicit, computable ‘visual’ construction of this tree for certain hyperbolic right‐angled Coxeter groups. As an application of our construction we identify a large class of such groups for which the JSJ tree, and hence the visual boundary, is a complete quasi‐isometry invariant, and thus the quasi‐isometry problem is decidable. We also give a direct proof of the fact that among the Coxeter groups we consider, the cocompact Fuchsian groups form a rigid quasi‐isometry class. In Appendix B, written jointly with Christopher Cashen, we show that the JSJ tree is not a complete quasi‐isometry invariant for the entire class of Coxeter groups we consider.</description><identifier>ISSN: 1753-8416</identifier><identifier>EISSN: 1753-8424</identifier><identifier>DOI: 10.1112/topo.12033</identifier><language>eng</language><subject>05C25 ; 20F55 ; 20F65 (primary) ; 57M07 (secondary)</subject><ispartof>Journal of topology, 2017-12, Vol.10 (4), p.1066-1106</ispartof><rights>2017 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2733-e8c5fe00b61439fabc77546bae7ad1f9a0b1ec16329b219efc51c1e7fced2c43</citedby><cites>FETCH-LOGICAL-c2733-e8c5fe00b61439fabc77546bae7ad1f9a0b1ec16329b219efc51c1e7fced2c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Ftopo.12033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Ftopo.12033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dani, Pallavi</creatorcontrib><creatorcontrib>Thomas, Anne</creatorcontrib><title>Bowditch's JSJ tree and the quasi‐isometry classification of certain Coxeter groups</title><title>Journal of topology</title><description>Bowditch's JSJ tree for splittings over 2‐ended subgroups is a quasi‐isometry invariant for 1‐ended hyperbolic groups which are not cocompact Fuchsian [Bowditch, Acta Math. 180 (1998) 145–186]. Our main result gives an explicit, computable ‘visual’ construction of this tree for certain hyperbolic right‐angled Coxeter groups. As an application of our construction we identify a large class of such groups for which the JSJ tree, and hence the visual boundary, is a complete quasi‐isometry invariant, and thus the quasi‐isometry problem is decidable. We also give a direct proof of the fact that among the Coxeter groups we consider, the cocompact Fuchsian groups form a rigid quasi‐isometry class. In Appendix B, written jointly with Christopher Cashen, we show that the JSJ tree is not a complete quasi‐isometry invariant for the entire class of Coxeter groups we consider.</description><subject>05C25</subject><subject>20F55</subject><subject>20F65 (primary)</subject><subject>57M07 (secondary)</subject><issn>1753-8416</issn><issn>1753-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEUhRujiYhufILuTEwGe9v5YZZKRCUkmIjrSefOrdQAxbYEZ-cj-Iw-iSDGpatzFt85i4-xcxA9AJBX0a1cD6RQ6oB1oMhU0k9levjXIT9mJyG8CpFvobzDnm_cprERZxeBj55GPHoirpcNjzPib2sd7NfHpw1uQdG3HOc6BGss6mjdkjvDkXzUdskH7p0ief7i3XoVTtmR0fNAZ7_ZZdPh7XRwn4wndw-D63GCslAqoT5mhoSoc0hVaXSNRZGlea2p0A2YUosaCCFXsqwllGQwAwQqDFIjMVVddrm_Re9C8GSqlbcL7dsKRLXzUe18VD8-tjDs4Y2dU_sPWU0nj5P95hv3gmX_</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Dani, Pallavi</creator><creator>Thomas, Anne</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201712</creationdate><title>Bowditch's JSJ tree and the quasi‐isometry classification of certain Coxeter groups</title><author>Dani, Pallavi ; Thomas, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2733-e8c5fe00b61439fabc77546bae7ad1f9a0b1ec16329b219efc51c1e7fced2c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>05C25</topic><topic>20F55</topic><topic>20F65 (primary)</topic><topic>57M07 (secondary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dani, Pallavi</creatorcontrib><creatorcontrib>Thomas, Anne</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dani, Pallavi</au><au>Thomas, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bowditch's JSJ tree and the quasi‐isometry classification of certain Coxeter groups</atitle><jtitle>Journal of topology</jtitle><date>2017-12</date><risdate>2017</risdate><volume>10</volume><issue>4</issue><spage>1066</spage><epage>1106</epage><pages>1066-1106</pages><issn>1753-8416</issn><eissn>1753-8424</eissn><abstract>Bowditch's JSJ tree for splittings over 2‐ended subgroups is a quasi‐isometry invariant for 1‐ended hyperbolic groups which are not cocompact Fuchsian [Bowditch, Acta Math. 180 (1998) 145–186]. Our main result gives an explicit, computable ‘visual’ construction of this tree for certain hyperbolic right‐angled Coxeter groups. As an application of our construction we identify a large class of such groups for which the JSJ tree, and hence the visual boundary, is a complete quasi‐isometry invariant, and thus the quasi‐isometry problem is decidable. We also give a direct proof of the fact that among the Coxeter groups we consider, the cocompact Fuchsian groups form a rigid quasi‐isometry class. In Appendix B, written jointly with Christopher Cashen, we show that the JSJ tree is not a complete quasi‐isometry invariant for the entire class of Coxeter groups we consider.</abstract><doi>10.1112/topo.12033</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1753-8416
ispartof Journal of topology, 2017-12, Vol.10 (4), p.1066-1106
issn 1753-8416
1753-8424
language eng
recordid cdi_crossref_primary_10_1112_topo_12033
source Access via Wiley Online Library
subjects 05C25
20F55
20F65 (primary)
57M07 (secondary)
title Bowditch's JSJ tree and the quasi‐isometry classification of certain Coxeter groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bowditch's%20JSJ%20tree%20and%20the%20quasi%E2%80%90isometry%20classification%20of%20certain%20Coxeter%20groups&rft.jtitle=Journal%20of%20topology&rft.au=Dani,%20Pallavi&rft.date=2017-12&rft.volume=10&rft.issue=4&rft.spage=1066&rft.epage=1106&rft.pages=1066-1106&rft.issn=1753-8416&rft.eissn=1753-8424&rft_id=info:doi/10.1112/topo.12033&rft_dat=%3Cwiley_cross%3ETOPO12033%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true