Density of Châtelet surfaces failing the Hasse principle

Châtelet surfaces provide a rich source of geometrically rational surfaces that do not always satisfy the Hasse principle. Restricting attention to a special class of Châtelet surfaces, we investigate the frequency that such counter-examples arise over the rational numbers.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2014-04, Vol.108 (4), p.1030-1078
Hauptverfasser: Bretèche, R. de la, Browning, T. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1078
container_issue 4
container_start_page 1030
container_title Proceedings of the London Mathematical Society
container_volume 108
creator Bretèche, R. de la
Browning, T. D.
description Châtelet surfaces provide a rich source of geometrically rational surfaces that do not always satisfy the Hasse principle. Restricting attention to a special class of Châtelet surfaces, we investigate the frequency that such counter-examples arise over the rational numbers.
doi_str_mv 10.1112/plms/pdt060
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_pdt060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1112/plms/pdt060</oup_id><sourcerecordid>10.1112/plms/pdt060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3060-4dcd5f94c62047474d4606f439435e5db6c43a32b7ca129e9ca18c2b04f85f333</originalsourceid><addsrcrecordid>eNp9j81KxDAcxIMoWFdPvkBOXqTuP5-7PcrqukJFQQVvIU0Tt5JtS9NF-jq-ii9mSj0vc5jLzPAbhC4J3BBC6Lz1uzBvyx4kHKGEcAkp5fzjGCUAlKeSEHGKzkL4AgDJmEhQdmfrUPUDbhxebX9_euttj8O-c9rYgJ2ufFV_4n5r8UaHYHHbVbWpWm_P0YnTPtiLf5-h9_X922qT5s8Pj6vbPDUsYqS8NKVwGTeSAl9ElZFKOs4yzoQVZSENZ5rRYmE0oZnNoi0NLYC7pXCMsRm6nnZN14TQWaciwk53gyKgxtdqfK2m1zFNpvR35e1wKKpe8qdXAmzsXE2dZt8eHP8DXBlpRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Density of Châtelet surfaces failing the Hasse principle</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Bretèche, R. de la ; Browning, T. D.</creator><creatorcontrib>Bretèche, R. de la ; Browning, T. D.</creatorcontrib><description>Châtelet surfaces provide a rich source of geometrically rational surfaces that do not always satisfy the Hasse principle. Restricting attention to a special class of Châtelet surfaces, we investigate the frequency that such counter-examples arise over the rational numbers.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pdt060</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Proceedings of the London Mathematical Society, 2014-04, Vol.108 (4), p.1030-1078</ispartof><rights>2013 London Mathematical Society 2013</rights><rights>2014 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3060-4dcd5f94c62047474d4606f439435e5db6c43a32b7ca129e9ca18c2b04f85f333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms%2Fpdt060$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms%2Fpdt060$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Bretèche, R. de la</creatorcontrib><creatorcontrib>Browning, T. D.</creatorcontrib><title>Density of Châtelet surfaces failing the Hasse principle</title><title>Proceedings of the London Mathematical Society</title><description>Châtelet surfaces provide a rich source of geometrically rational surfaces that do not always satisfy the Hasse principle. Restricting attention to a special class of Châtelet surfaces, we investigate the frequency that such counter-examples arise over the rational numbers.</description><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAcxIMoWFdPvkBOXqTuP5-7PcrqukJFQQVvIU0Tt5JtS9NF-jq-ii9mSj0vc5jLzPAbhC4J3BBC6Lz1uzBvyx4kHKGEcAkp5fzjGCUAlKeSEHGKzkL4AgDJmEhQdmfrUPUDbhxebX9_euttj8O-c9rYgJ2ufFV_4n5r8UaHYHHbVbWpWm_P0YnTPtiLf5-h9_X922qT5s8Pj6vbPDUsYqS8NKVwGTeSAl9ElZFKOs4yzoQVZSENZ5rRYmE0oZnNoi0NLYC7pXCMsRm6nnZN14TQWaciwk53gyKgxtdqfK2m1zFNpvR35e1wKKpe8qdXAmzsXE2dZt8eHP8DXBlpRw</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Bretèche, R. de la</creator><creator>Browning, T. D.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201404</creationdate><title>Density of Châtelet surfaces failing the Hasse principle</title><author>Bretèche, R. de la ; Browning, T. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3060-4dcd5f94c62047474d4606f439435e5db6c43a32b7ca129e9ca18c2b04f85f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretèche, R. de la</creatorcontrib><creatorcontrib>Browning, T. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretèche, R. de la</au><au>Browning, T. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density of Châtelet surfaces failing the Hasse principle</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2014-04</date><risdate>2014</risdate><volume>108</volume><issue>4</issue><spage>1030</spage><epage>1078</epage><pages>1030-1078</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>Châtelet surfaces provide a rich source of geometrically rational surfaces that do not always satisfy the Hasse principle. Restricting attention to a special class of Châtelet surfaces, we investigate the frequency that such counter-examples arise over the rational numbers.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pdt060</doi><tpages>49</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2014-04, Vol.108 (4), p.1030-1078
issn 0024-6115
1460-244X
language eng
recordid cdi_crossref_primary_10_1112_plms_pdt060
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title Density of Châtelet surfaces failing the Hasse principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20of%20Ch%C3%A2telet%20surfaces%20failing%20the%20Hasse%20principle&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Bret%C3%A8che,%20R.%20de%20la&rft.date=2014-04&rft.volume=108&rft.issue=4&rft.spage=1030&rft.epage=1078&rft.pages=1030-1078&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pdt060&rft_dat=%3Coup_cross%3E10.1112/plms/pdt060%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1112/plms/pdt060&rfr_iscdi=true