2‐torsion in the n‐solvable filtration of the knot concordance group

Cochran–Orr–Teichner introduced in [‘Knot concordance, Whitney towers and L2‐signatures’, Ann. of Math. (2) 157 (2003) 433–519] a natural filtration of the smooth knot concordance group C …⊂Fn+1⊂Fn.5⊂Fn⊂…⊂F1⊂F0.5⊂F0⊂C, called the (n)‐solvable filtration. We show that each associated graded abelian g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2011-02, Vol.102 (2), p.257-290
Hauptverfasser: Cochran, Tim D., Harvey, Shelly, Leidy, Constance
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 2
container_start_page 257
container_title Proceedings of the London Mathematical Society
container_volume 102
creator Cochran, Tim D.
Harvey, Shelly
Leidy, Constance
description Cochran–Orr–Teichner introduced in [‘Knot concordance, Whitney towers and L2‐signatures’, Ann. of Math. (2) 157 (2003) 433–519] a natural filtration of the smooth knot concordance group C …⊂Fn+1⊂Fn.5⊂Fn⊂…⊂F1⊂F0.5⊂F0⊂C, called the (n)‐solvable filtration. We show that each associated graded abelian group { Gn=Fn/Fn.5|n∈N },n⩾2, n ⩾ 2, contains infinite linearly independent sets of elements of order 2 (this was known previously for n = 0, 1). Each of the representative knots is negative amphichiral, with vanishing s‐invariant, τ‐invariant, δ‐invariants and Casson–Gordon invariants. Moreover, each is slice in a rational homology 4‐ball. In fact we show that there are many distinct such classes in Gn, distinguished by their Alexander polynomials and, more generally, by the torsion in their higher‐order Alexander modules.
doi_str_mv 10.1112/plms/pdq020
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_pdq020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS0257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3127-7857168f54a2f6d4a1ce7c022c3cb3a850ec14375fc801fe5e9d80aa640f7fa43</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoWEdXvkD3Uufe_DR1KYM6woiCCu5CJk20mmlqUpXZ-Qg-o0_i1Lp2deCcj7P4CDlEOEZEOu38Kk27-hUobJEMeQkF5fxhm2QAlBclotgleyk9A0DJmMjInH5_fvUhpia0edPm_ZPN202Vgn_XS29z1_g-6n6Yg_udX9rQ5ya0JsRat8bmjzG8dftkx2mf7MFfTsj9-dndbF4sri8uZ6eLwjCkspCVkFhWTnBNXVlzjcZKA5QaZpZMVwKsQc6kcKYCdFbYk7oCrUsOTjrN2YQcjb8mhpSidaqLzUrHtUJQgwQ1SFCjhA2NI_3ReLv-D1U3i6tboEKyH7ezY9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>2‐torsion in the n‐solvable filtration of the knot concordance group</title><source>Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Cochran, Tim D. ; Harvey, Shelly ; Leidy, Constance</creator><creatorcontrib>Cochran, Tim D. ; Harvey, Shelly ; Leidy, Constance</creatorcontrib><description>Cochran–Orr–Teichner introduced in [‘Knot concordance, Whitney towers and L2‐signatures’, Ann. of Math. (2) 157 (2003) 433–519] a natural filtration of the smooth knot concordance group C …⊂Fn+1⊂Fn.5⊂Fn⊂…⊂F1⊂F0.5⊂F0⊂C, called the (n)‐solvable filtration. We show that each associated graded abelian group { Gn=Fn/Fn.5|n∈N },n⩾2, n ⩾ 2, contains infinite linearly independent sets of elements of order 2 (this was known previously for n = 0, 1). Each of the representative knots is negative amphichiral, with vanishing s‐invariant, τ‐invariant, δ‐invariants and Casson–Gordon invariants. Moreover, each is slice in a rational homology 4‐ball. In fact we show that there are many distinct such classes in Gn, distinguished by their Alexander polynomials and, more generally, by the torsion in their higher‐order Alexander modules.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms/pdq020</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Proceedings of the London Mathematical Society, 2011-02, Vol.102 (2), p.257-290</ispartof><rights>2011 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3127-7857168f54a2f6d4a1ce7c022c3cb3a850ec14375fc801fe5e9d80aa640f7fa43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms%2Fpdq020$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms%2Fpdq020$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cochran, Tim D.</creatorcontrib><creatorcontrib>Harvey, Shelly</creatorcontrib><creatorcontrib>Leidy, Constance</creatorcontrib><title>2‐torsion in the n‐solvable filtration of the knot concordance group</title><title>Proceedings of the London Mathematical Society</title><description>Cochran–Orr–Teichner introduced in [‘Knot concordance, Whitney towers and L2‐signatures’, Ann. of Math. (2) 157 (2003) 433–519] a natural filtration of the smooth knot concordance group C …⊂Fn+1⊂Fn.5⊂Fn⊂…⊂F1⊂F0.5⊂F0⊂C, called the (n)‐solvable filtration. We show that each associated graded abelian group { Gn=Fn/Fn.5|n∈N },n⩾2, n ⩾ 2, contains infinite linearly independent sets of elements of order 2 (this was known previously for n = 0, 1). Each of the representative knots is negative amphichiral, with vanishing s‐invariant, τ‐invariant, δ‐invariants and Casson–Gordon invariants. Moreover, each is slice in a rational homology 4‐ball. In fact we show that there are many distinct such classes in Gn, distinguished by their Alexander polynomials and, more generally, by the torsion in their higher‐order Alexander modules.</description><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoWEdXvkD3Uufe_DR1KYM6woiCCu5CJk20mmlqUpXZ-Qg-o0_i1Lp2deCcj7P4CDlEOEZEOu38Kk27-hUobJEMeQkF5fxhm2QAlBclotgleyk9A0DJmMjInH5_fvUhpia0edPm_ZPN202Vgn_XS29z1_g-6n6Yg_udX9rQ5ya0JsRat8bmjzG8dftkx2mf7MFfTsj9-dndbF4sri8uZ6eLwjCkspCVkFhWTnBNXVlzjcZKA5QaZpZMVwKsQc6kcKYCdFbYk7oCrUsOTjrN2YQcjb8mhpSidaqLzUrHtUJQgwQ1SFCjhA2NI_3ReLv-D1U3i6tboEKyH7ezY9M</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Cochran, Tim D.</creator><creator>Harvey, Shelly</creator><creator>Leidy, Constance</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201102</creationdate><title>2‐torsion in the n‐solvable filtration of the knot concordance group</title><author>Cochran, Tim D. ; Harvey, Shelly ; Leidy, Constance</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3127-7857168f54a2f6d4a1ce7c022c3cb3a850ec14375fc801fe5e9d80aa640f7fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochran, Tim D.</creatorcontrib><creatorcontrib>Harvey, Shelly</creatorcontrib><creatorcontrib>Leidy, Constance</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochran, Tim D.</au><au>Harvey, Shelly</au><au>Leidy, Constance</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2‐torsion in the n‐solvable filtration of the knot concordance group</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2011-02</date><risdate>2011</risdate><volume>102</volume><issue>2</issue><spage>257</spage><epage>290</epage><pages>257-290</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>Cochran–Orr–Teichner introduced in [‘Knot concordance, Whitney towers and L2‐signatures’, Ann. of Math. (2) 157 (2003) 433–519] a natural filtration of the smooth knot concordance group C …⊂Fn+1⊂Fn.5⊂Fn⊂…⊂F1⊂F0.5⊂F0⊂C, called the (n)‐solvable filtration. We show that each associated graded abelian group { Gn=Fn/Fn.5|n∈N },n⩾2, n ⩾ 2, contains infinite linearly independent sets of elements of order 2 (this was known previously for n = 0, 1). Each of the representative knots is negative amphichiral, with vanishing s‐invariant, τ‐invariant, δ‐invariants and Casson–Gordon invariants. Moreover, each is slice in a rational homology 4‐ball. In fact we show that there are many distinct such classes in Gn, distinguished by their Alexander polynomials and, more generally, by the torsion in their higher‐order Alexander modules.</abstract><pub>Oxford University Press</pub><doi>10.1112/plms/pdq020</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2011-02, Vol.102 (2), p.257-290
issn 0024-6115
1460-244X
language eng
recordid cdi_crossref_primary_10_1112_plms_pdq020
source Wiley Online Library; Alma/SFX Local Collection
title 2‐torsion in the n‐solvable filtration of the knot concordance group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2%E2%80%90torsion%20in%20the%20n%E2%80%90solvable%20filtration%20of%20the%20knot%20concordance%20group&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Cochran,%20Tim%20D.&rft.date=2011-02&rft.volume=102&rft.issue=2&rft.spage=257&rft.epage=290&rft.pages=257-290&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms/pdq020&rft_dat=%3Cwiley_cross%3EPLMS0257%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true