Geometry of canonical genus 4 curves
We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall‐crossing. This article provides the first description of a mod...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2024-01, Vol.128 (1), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Proceedings of the London Mathematical Society |
container_volume | 128 |
creator | Rezaee, Fatemeh |
description | We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall‐crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall‐crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall‐crossing techniques. |
doi_str_mv | 10.1112/plms.12577 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2687-41161815517758a6179bef8a1bef01e5dbdc1a97840191e7ecdc68f1c074b7513</originalsourceid><addsrcrecordid>eNp9j0tLxDAAhIMoWFcv_oIePAlZM21ePcqiq1BRUMFbSNNUKn0siav037trPXuZuXwz8BFyDrYEkF1tuj4ukQmlDkgCLhnNOH87JAljGacSEMfkJMYPxpjMc5GQi7Ufe_8ZpnRsUmeHcWid7dJ3P2xjylO3DV8-npKjxnbRn_31grze3rys7mj5uL5fXZfUZVIrygEJDSGglNBWQhWVb7TFLhm8qKvawRZKc4YCXnlXO6kbOKZ4pQTyBbmcf10YYwy-MZvQ9jZMBszs_czez_z67WDM8Hfb-ekf0jyVD8_z5geuBVFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometry of canonical genus 4 curves</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rezaee, Fatemeh</creator><creatorcontrib>Rezaee, Fatemeh</creatorcontrib><description>We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall‐crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall‐crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall‐crossing techniques.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12577</identifier><language>eng</language><ispartof>Proceedings of the London Mathematical Society, 2024-01, Vol.128 (1), p.n/a</ispartof><rights>2024 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2687-41161815517758a6179bef8a1bef01e5dbdc1a97840191e7ecdc68f1c074b7513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12577$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12577$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Rezaee, Fatemeh</creatorcontrib><title>Geometry of canonical genus 4 curves</title><title>Proceedings of the London Mathematical Society</title><description>We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall‐crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall‐crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall‐crossing techniques.</description><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9j0tLxDAAhIMoWFcv_oIePAlZM21ePcqiq1BRUMFbSNNUKn0siav037trPXuZuXwz8BFyDrYEkF1tuj4ukQmlDkgCLhnNOH87JAljGacSEMfkJMYPxpjMc5GQi7Ufe_8ZpnRsUmeHcWid7dJ3P2xjylO3DV8-npKjxnbRn_31grze3rys7mj5uL5fXZfUZVIrygEJDSGglNBWQhWVb7TFLhm8qKvawRZKc4YCXnlXO6kbOKZ4pQTyBbmcf10YYwy-MZvQ9jZMBszs_czez_z67WDM8Hfb-ekf0jyVD8_z5geuBVFs</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Rezaee, Fatemeh</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202401</creationdate><title>Geometry of canonical genus 4 curves</title><author>Rezaee, Fatemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2687-41161815517758a6179bef8a1bef01e5dbdc1a97840191e7ecdc68f1c074b7513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaee, Fatemeh</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaee, Fatemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of canonical genus 4 curves</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2024-01</date><risdate>2024</risdate><volume>128</volume><issue>1</issue><epage>n/a</epage><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall‐crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall‐crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall‐crossing techniques.</abstract><doi>10.1112/plms.12577</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6115 |
ispartof | Proceedings of the London Mathematical Society, 2024-01, Vol.128 (1), p.n/a |
issn | 0024-6115 1460-244X |
language | eng |
recordid | cdi_crossref_primary_10_1112_plms_12577 |
source | Wiley Online Library Journals Frontfile Complete |
title | Geometry of canonical genus 4 curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20canonical%20genus%204%20curves&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Rezaee,%20Fatemeh&rft.date=2024-01&rft.volume=128&rft.issue=1&rft.epage=n/a&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12577&rft_dat=%3Cwiley_cross%3EPLMS12577%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |