Shift‐invariance for vertex models and polymers

We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage perco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2022-02, Vol.124 (2), p.182-299
Hauptverfasser: Borodin, Alexei, Gorin, Vadim, Wheeler, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 2
container_start_page 182
container_title Proceedings of the London Mathematical Society
container_volume 124
creator Borodin, Alexei
Gorin, Vadim
Wheeler, Michael
description We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage percolation, the Kardar–Parisi–Zhang equation, and the Airy sheet. In each instance it leads to computations of previously inaccessible joint distributions. The proofs rely on a combination of the Yang–Baxter integrability of the inhomogeneous colored stochastic six‐vertex model and Lagrange interpolation. We also show that a simplified (Gaussian) version of our theorems is related to the invariance in law of the local time of the Brownian bridge under the shift of the observation level.
doi_str_mv 10.1112/plms.12427
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3097-5040e9d4c37b846671e6929227277cebf29de9f44afbd4c19d0bdf0ecd8663113</originalsourceid><addsrcrecordid>eNp9z89KxDAQx_EgCtbVi0_Qs9B1JkmTzVEWdYWKwip4K20zwUr_kSyrvfkIPqNP4q717Gkun_nBl7FzhDki8suhacMcueT6gEUoFSRcypdDFgFwmSjE9JidhPAGAEqINGK4fq3d5vvzq-62ha-LrqLY9T7ekt_QR9z2lpoQF52Nh74ZW_LhlB25ogl09ndn7Pnm-mm5SrKH27vlVZZUAoxOUpBAxspK6HIhldJIynDDueZaV1Q6biwZJ2Xhyp1CY6G0DqiyC6UEopixi2m38n0Inlw--Lot_Jgj5PvYfB-b_8buME74vW5o_Efmj9n9evr5AY0KWD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shift‐invariance for vertex models and polymers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Borodin, Alexei ; Gorin, Vadim ; Wheeler, Michael</creator><creatorcontrib>Borodin, Alexei ; Gorin, Vadim ; Wheeler, Michael</creatorcontrib><description>We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage percolation, the Kardar–Parisi–Zhang equation, and the Airy sheet. In each instance it leads to computations of previously inaccessible joint distributions. The proofs rely on a combination of the Yang–Baxter integrability of the inhomogeneous colored stochastic six‐vertex model and Lagrange interpolation. We also show that a simplified (Gaussian) version of our theorems is related to the invariance in law of the local time of the Brownian bridge under the shift of the observation level.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12427</identifier><language>eng</language><ispartof>Proceedings of the London Mathematical Society, 2022-02, Vol.124 (2), p.182-299</ispartof><rights>2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3097-5040e9d4c37b846671e6929227277cebf29de9f44afbd4c19d0bdf0ecd8663113</citedby><cites>FETCH-LOGICAL-c3097-5040e9d4c37b846671e6929227277cebf29de9f44afbd4c19d0bdf0ecd8663113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Borodin, Alexei</creatorcontrib><creatorcontrib>Gorin, Vadim</creatorcontrib><creatorcontrib>Wheeler, Michael</creatorcontrib><title>Shift‐invariance for vertex models and polymers</title><title>Proceedings of the London Mathematical Society</title><description>We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage percolation, the Kardar–Parisi–Zhang equation, and the Airy sheet. In each instance it leads to computations of previously inaccessible joint distributions. The proofs rely on a combination of the Yang–Baxter integrability of the inhomogeneous colored stochastic six‐vertex model and Lagrange interpolation. We also show that a simplified (Gaussian) version of our theorems is related to the invariance in law of the local time of the Brownian bridge under the shift of the observation level.</description><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9z89KxDAQx_EgCtbVi0_Qs9B1JkmTzVEWdYWKwip4K20zwUr_kSyrvfkIPqNP4q717Gkun_nBl7FzhDki8suhacMcueT6gEUoFSRcypdDFgFwmSjE9JidhPAGAEqINGK4fq3d5vvzq-62ha-LrqLY9T7ekt_QR9z2lpoQF52Nh74ZW_LhlB25ogl09ndn7Pnm-mm5SrKH27vlVZZUAoxOUpBAxspK6HIhldJIynDDueZaV1Q6biwZJ2Xhyp1CY6G0DqiyC6UEopixi2m38n0Inlw--Lot_Jgj5PvYfB-b_8buME74vW5o_Efmj9n9evr5AY0KWD0</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Borodin, Alexei</creator><creator>Gorin, Vadim</creator><creator>Wheeler, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202202</creationdate><title>Shift‐invariance for vertex models and polymers</title><author>Borodin, Alexei ; Gorin, Vadim ; Wheeler, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3097-5040e9d4c37b846671e6929227277cebf29de9f44afbd4c19d0bdf0ecd8663113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, Alexei</creatorcontrib><creatorcontrib>Gorin, Vadim</creatorcontrib><creatorcontrib>Wheeler, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, Alexei</au><au>Gorin, Vadim</au><au>Wheeler, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shift‐invariance for vertex models and polymers</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2022-02</date><risdate>2022</risdate><volume>124</volume><issue>2</issue><spage>182</spage><epage>299</epage><pages>182-299</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage percolation, the Kardar–Parisi–Zhang equation, and the Airy sheet. In each instance it leads to computations of previously inaccessible joint distributions. The proofs rely on a combination of the Yang–Baxter integrability of the inhomogeneous colored stochastic six‐vertex model and Lagrange interpolation. We also show that a simplified (Gaussian) version of our theorems is related to the invariance in law of the local time of the Brownian bridge under the shift of the observation level.</abstract><doi>10.1112/plms.12427</doi><tpages>118</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2022-02, Vol.124 (2), p.182-299
issn 0024-6115
1460-244X
language eng
recordid cdi_crossref_primary_10_1112_plms_12427
source Wiley Online Library Journals Frontfile Complete
title Shift‐invariance for vertex models and polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shift%E2%80%90invariance%20for%20vertex%20models%20and%20polymers&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Borodin,%20Alexei&rft.date=2022-02&rft.volume=124&rft.issue=2&rft.spage=182&rft.epage=299&rft.pages=182-299&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12427&rft_dat=%3Cwiley_cross%3EPLMS12427%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true