Shift‐invariance for vertex models and polymers
We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage perco...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2022-02, Vol.124 (2), p.182-299 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 2 |
container_start_page | 182 |
container_title | Proceedings of the London Mathematical Society |
container_volume | 124 |
creator | Borodin, Alexei Gorin, Vadim Wheeler, Michael |
description | We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage percolation, the Kardar–Parisi–Zhang equation, and the Airy sheet. In each instance it leads to computations of previously inaccessible joint distributions. The proofs rely on a combination of the Yang–Baxter integrability of the inhomogeneous colored stochastic six‐vertex model and Lagrange interpolation. We also show that a simplified (Gaussian) version of our theorems is related to the invariance in law of the local time of the Brownian bridge under the shift of the observation level. |
doi_str_mv | 10.1112/plms.12427 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3097-5040e9d4c37b846671e6929227277cebf29de9f44afbd4c19d0bdf0ecd8663113</originalsourceid><addsrcrecordid>eNp9z89KxDAQx_EgCtbVi0_Qs9B1JkmTzVEWdYWKwip4K20zwUr_kSyrvfkIPqNP4q717Gkun_nBl7FzhDki8suhacMcueT6gEUoFSRcypdDFgFwmSjE9JidhPAGAEqINGK4fq3d5vvzq-62ha-LrqLY9T7ekt_QR9z2lpoQF52Nh74ZW_LhlB25ogl09ndn7Pnm-mm5SrKH27vlVZZUAoxOUpBAxspK6HIhldJIynDDueZaV1Q6biwZJ2Xhyp1CY6G0DqiyC6UEopixi2m38n0Inlw--Lot_Jgj5PvYfB-b_8buME74vW5o_Efmj9n9evr5AY0KWD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shift‐invariance for vertex models and polymers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Borodin, Alexei ; Gorin, Vadim ; Wheeler, Michael</creator><creatorcontrib>Borodin, Alexei ; Gorin, Vadim ; Wheeler, Michael</creatorcontrib><description>We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage percolation, the Kardar–Parisi–Zhang equation, and the Airy sheet. In each instance it leads to computations of previously inaccessible joint distributions. The proofs rely on a combination of the Yang–Baxter integrability of the inhomogeneous colored stochastic six‐vertex model and Lagrange interpolation. We also show that a simplified (Gaussian) version of our theorems is related to the invariance in law of the local time of the Brownian bridge under the shift of the observation level.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12427</identifier><language>eng</language><ispartof>Proceedings of the London Mathematical Society, 2022-02, Vol.124 (2), p.182-299</ispartof><rights>2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3097-5040e9d4c37b846671e6929227277cebf29de9f44afbd4c19d0bdf0ecd8663113</citedby><cites>FETCH-LOGICAL-c3097-5040e9d4c37b846671e6929227277cebf29de9f44afbd4c19d0bdf0ecd8663113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Borodin, Alexei</creatorcontrib><creatorcontrib>Gorin, Vadim</creatorcontrib><creatorcontrib>Wheeler, Michael</creatorcontrib><title>Shift‐invariance for vertex models and polymers</title><title>Proceedings of the London Mathematical Society</title><description>We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage percolation, the Kardar–Parisi–Zhang equation, and the Airy sheet. In each instance it leads to computations of previously inaccessible joint distributions. The proofs rely on a combination of the Yang–Baxter integrability of the inhomogeneous colored stochastic six‐vertex model and Lagrange interpolation. We also show that a simplified (Gaussian) version of our theorems is related to the invariance in law of the local time of the Brownian bridge under the shift of the observation level.</description><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9z89KxDAQx_EgCtbVi0_Qs9B1JkmTzVEWdYWKwip4K20zwUr_kSyrvfkIPqNP4q717Gkun_nBl7FzhDki8suhacMcueT6gEUoFSRcypdDFgFwmSjE9JidhPAGAEqINGK4fq3d5vvzq-62ha-LrqLY9T7ekt_QR9z2lpoQF52Nh74ZW_LhlB25ogl09ndn7Pnm-mm5SrKH27vlVZZUAoxOUpBAxspK6HIhldJIynDDueZaV1Q6biwZJ2Xhyp1CY6G0DqiyC6UEopixi2m38n0Inlw--Lot_Jgj5PvYfB-b_8buME74vW5o_Efmj9n9evr5AY0KWD0</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Borodin, Alexei</creator><creator>Gorin, Vadim</creator><creator>Wheeler, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202202</creationdate><title>Shift‐invariance for vertex models and polymers</title><author>Borodin, Alexei ; Gorin, Vadim ; Wheeler, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3097-5040e9d4c37b846671e6929227277cebf29de9f44afbd4c19d0bdf0ecd8663113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, Alexei</creatorcontrib><creatorcontrib>Gorin, Vadim</creatorcontrib><creatorcontrib>Wheeler, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, Alexei</au><au>Gorin, Vadim</au><au>Wheeler, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shift‐invariance for vertex models and polymers</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2022-02</date><risdate>2022</risdate><volume>124</volume><issue>2</issue><spage>182</spage><epage>299</epage><pages>182-299</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>We establish a symmetry in a variety of integrable stochastic systems: certain multi‐point distributions of natural observables are unchanged under a shift of a subset of observation points. The property holds for stochastic vertex models, (1+1)d directed polymers in random media, last passage percolation, the Kardar–Parisi–Zhang equation, and the Airy sheet. In each instance it leads to computations of previously inaccessible joint distributions. The proofs rely on a combination of the Yang–Baxter integrability of the inhomogeneous colored stochastic six‐vertex model and Lagrange interpolation. We also show that a simplified (Gaussian) version of our theorems is related to the invariance in law of the local time of the Brownian bridge under the shift of the observation level.</abstract><doi>10.1112/plms.12427</doi><tpages>118</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6115 |
ispartof | Proceedings of the London Mathematical Society, 2022-02, Vol.124 (2), p.182-299 |
issn | 0024-6115 1460-244X |
language | eng |
recordid | cdi_crossref_primary_10_1112_plms_12427 |
source | Wiley Online Library Journals Frontfile Complete |
title | Shift‐invariance for vertex models and polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shift%E2%80%90invariance%20for%20vertex%20models%20and%20polymers&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Borodin,%20Alexei&rft.date=2022-02&rft.volume=124&rft.issue=2&rft.spage=182&rft.epage=299&rft.pages=182-299&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12427&rft_dat=%3Cwiley_cross%3EPLMS12427%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |