Degrees of iterates of rational maps on normal projective varieties

Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2020-11, Vol.121 (5), p.1268-1310
1. Verfasser: Dang, Nguyen‐Bac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310
container_issue 5
container_start_page 1268
container_title Proceedings of the London Mathematical Society
container_volume 121
creator Dang, Nguyen‐Bac
description Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–971), and by Truong (J. Reine Angew. Math. 758 (2020) 139–182). Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their birational invariance. Our approach exploits intensively positivity properties in the space of numerical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first obtained by Xiao (Ann. Inst. Fourier (Grenoble) 65 (2015) 1367–1369) and Popovici (Math. Ann. 364 (2016) 649–655), which generalizes Siu's inequality (see Trapani, Math. Z 219 (1995) 387–401) to algebraic cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to a uniform constant by the norm of its action by pull‐back on the space of numerical classes in X.
doi_str_mv 10.1112/plms.12366
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3756-77e0af4fe4dbb287288fd87f51d5a0e3ff2cc458315f748ad21cbec3995aba463</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFcv_oKeha6ZfDV7lPoJFQUVvJU0nUiWfpGUlf33dq1nT_POyzMDDyGXQNcAwK7HtotrYFypI5KAUDRjQnwek4RSJjIFIE_JWYxbSqniXCakuMWvgBjTwaV-wmCmJc_BD71p086Mc9Gn_RC6eR3DsEU7-R2mOxM8Th7jOTlxpo148TdX5OP-7r14zMqXh6fipswsz6XK8hypccKhaOqa6Zxp7RqdOwmNNBS5c8xaITUH6XKhTcPA1mj5ZiNNbYTiK3K1_LVhiDGgq8bgOxP2FdDqoF8d9Ktf_RmGBf72Le7_IavX8vltufkBnqZesQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Degrees of iterates of rational maps on normal projective varieties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dang, Nguyen‐Bac</creator><creatorcontrib>Dang, Nguyen‐Bac</creatorcontrib><description>Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–971), and by Truong (J. Reine Angew. Math. 758 (2020) 139–182). Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their birational invariance. Our approach exploits intensively positivity properties in the space of numerical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first obtained by Xiao (Ann. Inst. Fourier (Grenoble) 65 (2015) 1367–1369) and Popovici (Math. Ann. 364 (2016) 649–655), which generalizes Siu's inequality (see Trapani, Math. Z 219 (1995) 387–401) to algebraic cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to a uniform constant by the norm of its action by pull‐back on the space of numerical classes in X.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12366</identifier><language>eng</language><subject>14C25 (secondary) ; 14E05 ; 37A35</subject><ispartof>Proceedings of the London Mathematical Society, 2020-11, Vol.121 (5), p.1268-1310</ispartof><rights>2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3756-77e0af4fe4dbb287288fd87f51d5a0e3ff2cc458315f748ad21cbec3995aba463</citedby><cites>FETCH-LOGICAL-c3756-77e0af4fe4dbb287288fd87f51d5a0e3ff2cc458315f748ad21cbec3995aba463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12366$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12366$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dang, Nguyen‐Bac</creatorcontrib><title>Degrees of iterates of rational maps on normal projective varieties</title><title>Proceedings of the London Mathematical Society</title><description>Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–971), and by Truong (J. Reine Angew. Math. 758 (2020) 139–182). Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their birational invariance. Our approach exploits intensively positivity properties in the space of numerical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first obtained by Xiao (Ann. Inst. Fourier (Grenoble) 65 (2015) 1367–1369) and Popovici (Math. Ann. 364 (2016) 649–655), which generalizes Siu's inequality (see Trapani, Math. Z 219 (1995) 387–401) to algebraic cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to a uniform constant by the norm of its action by pull‐back on the space of numerical classes in X.</description><subject>14C25 (secondary)</subject><subject>14E05</subject><subject>37A35</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFcv_oKeha6ZfDV7lPoJFQUVvJU0nUiWfpGUlf33dq1nT_POyzMDDyGXQNcAwK7HtotrYFypI5KAUDRjQnwek4RSJjIFIE_JWYxbSqniXCakuMWvgBjTwaV-wmCmJc_BD71p086Mc9Gn_RC6eR3DsEU7-R2mOxM8Th7jOTlxpo148TdX5OP-7r14zMqXh6fipswsz6XK8hypccKhaOqa6Zxp7RqdOwmNNBS5c8xaITUH6XKhTcPA1mj5ZiNNbYTiK3K1_LVhiDGgq8bgOxP2FdDqoF8d9Ktf_RmGBf72Le7_IavX8vltufkBnqZesQ</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Dang, Nguyen‐Bac</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202011</creationdate><title>Degrees of iterates of rational maps on normal projective varieties</title><author>Dang, Nguyen‐Bac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3756-77e0af4fe4dbb287288fd87f51d5a0e3ff2cc458315f748ad21cbec3995aba463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14C25 (secondary)</topic><topic>14E05</topic><topic>37A35</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Nguyen‐Bac</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Nguyen‐Bac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degrees of iterates of rational maps on normal projective varieties</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2020-11</date><risdate>2020</risdate><volume>121</volume><issue>5</issue><spage>1268</spage><epage>1310</epage><pages>1268-1310</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–971), and by Truong (J. Reine Angew. Math. 758 (2020) 139–182). Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their birational invariance. Our approach exploits intensively positivity properties in the space of numerical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first obtained by Xiao (Ann. Inst. Fourier (Grenoble) 65 (2015) 1367–1369) and Popovici (Math. Ann. 364 (2016) 649–655), which generalizes Siu's inequality (see Trapani, Math. Z 219 (1995) 387–401) to algebraic cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to a uniform constant by the norm of its action by pull‐back on the space of numerical classes in X.</abstract><doi>10.1112/plms.12366</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2020-11, Vol.121 (5), p.1268-1310
issn 0024-6115
1460-244X
language eng
recordid cdi_crossref_primary_10_1112_plms_12366
source Wiley Online Library Journals Frontfile Complete
subjects 14C25 (secondary)
14E05
37A35
title Degrees of iterates of rational maps on normal projective varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degrees%20of%20iterates%20of%20rational%20maps%20on%20normal%20projective%20varieties&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Dang,%20Nguyen%E2%80%90Bac&rft.date=2020-11&rft.volume=121&rft.issue=5&rft.spage=1268&rft.epage=1310&rft.pages=1268-1310&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12366&rft_dat=%3Cwiley_cross%3EPLMS12366%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true