Degrees of iterates of rational maps on normal projective varieties
Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–9...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2020-11, Vol.121 (5), p.1268-1310 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 |
---|---|
container_issue | 5 |
container_start_page | 1268 |
container_title | Proceedings of the London Mathematical Society |
container_volume | 121 |
creator | Dang, Nguyen‐Bac |
description | Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–971), and by Truong (J. Reine Angew. Math. 758 (2020) 139–182). Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their birational invariance. Our approach exploits intensively positivity properties in the space of numerical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first obtained by Xiao (Ann. Inst. Fourier (Grenoble) 65 (2015) 1367–1369) and Popovici (Math. Ann. 364 (2016) 649–655), which generalizes Siu's inequality (see Trapani, Math. Z 219 (1995) 387–401) to algebraic cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to a uniform constant by the norm of its action by pull‐back on the space of numerical classes in X. |
doi_str_mv | 10.1112/plms.12366 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3756-77e0af4fe4dbb287288fd87f51d5a0e3ff2cc458315f748ad21cbec3995aba463</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFcv_oKeha6ZfDV7lPoJFQUVvJU0nUiWfpGUlf33dq1nT_POyzMDDyGXQNcAwK7HtotrYFypI5KAUDRjQnwek4RSJjIFIE_JWYxbSqniXCakuMWvgBjTwaV-wmCmJc_BD71p086Mc9Gn_RC6eR3DsEU7-R2mOxM8Th7jOTlxpo148TdX5OP-7r14zMqXh6fipswsz6XK8hypccKhaOqa6Zxp7RqdOwmNNBS5c8xaITUH6XKhTcPA1mj5ZiNNbYTiK3K1_LVhiDGgq8bgOxP2FdDqoF8d9Ktf_RmGBf72Le7_IavX8vltufkBnqZesQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Degrees of iterates of rational maps on normal projective varieties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dang, Nguyen‐Bac</creator><creatorcontrib>Dang, Nguyen‐Bac</creatorcontrib><description>Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–971), and by Truong (J. Reine Angew. Math. 758 (2020) 139–182). Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their birational invariance. Our approach exploits intensively positivity properties in the space of numerical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first obtained by Xiao (Ann. Inst. Fourier (Grenoble) 65 (2015) 1367–1369) and Popovici (Math. Ann. 364 (2016) 649–655), which generalizes Siu's inequality (see Trapani, Math. Z 219 (1995) 387–401) to algebraic cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to a uniform constant by the norm of its action by pull‐back on the space of numerical classes in X.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12366</identifier><language>eng</language><subject>14C25 (secondary) ; 14E05 ; 37A35</subject><ispartof>Proceedings of the London Mathematical Society, 2020-11, Vol.121 (5), p.1268-1310</ispartof><rights>2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3756-77e0af4fe4dbb287288fd87f51d5a0e3ff2cc458315f748ad21cbec3995aba463</citedby><cites>FETCH-LOGICAL-c3756-77e0af4fe4dbb287288fd87f51d5a0e3ff2cc458315f748ad21cbec3995aba463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12366$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12366$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dang, Nguyen‐Bac</creatorcontrib><title>Degrees of iterates of rational maps on normal projective varieties</title><title>Proceedings of the London Mathematical Society</title><description>Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–971), and by Truong (J. Reine Angew. Math. 758 (2020) 139–182). Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their birational invariance. Our approach exploits intensively positivity properties in the space of numerical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first obtained by Xiao (Ann. Inst. Fourier (Grenoble) 65 (2015) 1367–1369) and Popovici (Math. Ann. 364 (2016) 649–655), which generalizes Siu's inequality (see Trapani, Math. Z 219 (1995) 387–401) to algebraic cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to a uniform constant by the norm of its action by pull‐back on the space of numerical classes in X.</description><subject>14C25 (secondary)</subject><subject>14E05</subject><subject>37A35</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFcv_oKeha6ZfDV7lPoJFQUVvJU0nUiWfpGUlf33dq1nT_POyzMDDyGXQNcAwK7HtotrYFypI5KAUDRjQnwek4RSJjIFIE_JWYxbSqniXCakuMWvgBjTwaV-wmCmJc_BD71p086Mc9Gn_RC6eR3DsEU7-R2mOxM8Th7jOTlxpo148TdX5OP-7r14zMqXh6fipswsz6XK8hypccKhaOqa6Zxp7RqdOwmNNBS5c8xaITUH6XKhTcPA1mj5ZiNNbYTiK3K1_LVhiDGgq8bgOxP2FdDqoF8d9Ktf_RmGBf72Le7_IavX8vltufkBnqZesQ</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Dang, Nguyen‐Bac</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202011</creationdate><title>Degrees of iterates of rational maps on normal projective varieties</title><author>Dang, Nguyen‐Bac</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3756-77e0af4fe4dbb287288fd87f51d5a0e3ff2cc458315f748ad21cbec3995aba463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14C25 (secondary)</topic><topic>14E05</topic><topic>37A35</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Nguyen‐Bac</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Nguyen‐Bac</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degrees of iterates of rational maps on normal projective varieties</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2020-11</date><risdate>2020</risdate><volume>121</volume><issue>5</issue><spage>1268</spage><epage>1310</epage><pages>1268-1310</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>Let X be a normal projective variety defined over an algebraically closed field of arbitrary characteristic. We study the sequence of intermediate degrees of the iterates of a dominant rational selfmap of X, recovering former results by Dinh and Sibony (Ann. Sci. Éc. Norm. Supér. (4) 37 (2004) 959–971), and by Truong (J. Reine Angew. Math. 758 (2020) 139–182). Precisely, we give a new proof of the submultiplicativity properties of these degrees and of their birational invariance. Our approach exploits intensively positivity properties in the space of numerical cycles of arbitrary codimension. In particular, we prove an algebraic version of an inequality first obtained by Xiao (Ann. Inst. Fourier (Grenoble) 65 (2015) 1367–1369) and Popovici (Math. Ann. 364 (2016) 649–655), which generalizes Siu's inequality (see Trapani, Math. Z 219 (1995) 387–401) to algebraic cycles of arbitrary codimension. This allows us to show that the degree of a map is controlled up to a uniform constant by the norm of its action by pull‐back on the space of numerical classes in X.</abstract><doi>10.1112/plms.12366</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6115 |
ispartof | Proceedings of the London Mathematical Society, 2020-11, Vol.121 (5), p.1268-1310 |
issn | 0024-6115 1460-244X |
language | eng |
recordid | cdi_crossref_primary_10_1112_plms_12366 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 14C25 (secondary) 14E05 37A35 |
title | Degrees of iterates of rational maps on normal projective varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A57%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degrees%20of%20iterates%20of%20rational%20maps%20on%20normal%20projective%20varieties&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Dang,%20Nguyen%E2%80%90Bac&rft.date=2020-11&rft.volume=121&rft.issue=5&rft.spage=1268&rft.epage=1310&rft.pages=1268-1310&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12366&rft_dat=%3Cwiley_cross%3EPLMS12366%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |