Littlewood–Richardson coefficients via mirror symmetry for cluster varieties

I prove that the full Fock–Goncharov conjecture holds for Conf3×(Fℓ∼) — the configuration space of triples of decorated flags in generic position. As a key ingredient of this proof, I exhibit a maximal green sequence for the quiver of the initial seed. I compute the Landau–Ginzburg potential W on Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2020-09, Vol.121 (3), p.463-512
1. Verfasser: Magee, Timothy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue 3
container_start_page 463
container_title Proceedings of the London Mathematical Society
container_volume 121
creator Magee, Timothy
description I prove that the full Fock–Goncharov conjecture holds for Conf3×(Fℓ∼) — the configuration space of triples of decorated flags in generic position. As a key ingredient of this proof, I exhibit a maximal green sequence for the quiver of the initial seed. I compute the Landau–Ginzburg potential W on Conf3×(Fℓ∼)∨ associated to the partial minimal model Conf3×(Fℓ∼)⊂Conf3(Fℓ∼). The integral points of the associated ‘cone’ Ξ:={WT⩾0}⊂Conf3×(Fℓ∼)∨(RT) parametrize a basis for O(Conf3(Fℓ∼))=⨁(Vα⊗Vβ⊗Vγ)G and encode the Littlewood–Richardson coefficients cαβγ. In the initial seed, the inequalities defining Ξ are exactly the tail positivity conditions of [18]. I exhibit a unimodular p∗ map that identifies W with the potential of Goncharov–Shen on Conf3×(Fℓ∼) [8] and Ξ with the Knutson–Tao hive cone [14]. This paper relies extensively on colour figures. Some references to colour may not be meaningful in the printed version, and we refer the reader to the online version which includes the colour figures.
doi_str_mv 10.1112/plms.12329
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3099-2c21e769407d0e6cca7488b3b9d714171ff511f71781373a7e7c3f2b198896263</originalsourceid><addsrcrecordid>eNp9kMtKxDAYhYMoOI5ufIKuhY75kzRpljKoI9QLXsBdSdM_GGmnQ1Jn6M538A19Emesa1eHA985i4-QU6AzAGDnq6aNM2Cc6T0yASFpyoR43ScTSplIJUB2SI5ifKeUSs6zCbkrfN83uOm6-vvz69HbNxPq2C0T26Fz3npc9jFZe5O0PoQuJHFoW-zDkLhtsc1H7DEkaxM89h7jMTlwpol48pdT8nJ1-TxfpMX99c38okgtp1qnzDJAJbWgqqYorTVK5HnFK10rEKDAuQzAKVA5cMWNQmW5YxXoPNeSST4lZ-OvDV2MAV25Cr41YSiBljsT5c5E-WtiC8MIb3yDwz9k-VDcPo2bH6PYYvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Littlewood–Richardson coefficients via mirror symmetry for cluster varieties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Magee, Timothy</creator><creatorcontrib>Magee, Timothy</creatorcontrib><description>I prove that the full Fock–Goncharov conjecture holds for Conf3×(Fℓ∼) — the configuration space of triples of decorated flags in generic position. As a key ingredient of this proof, I exhibit a maximal green sequence for the quiver of the initial seed. I compute the Landau–Ginzburg potential W on Conf3×(Fℓ∼)∨ associated to the partial minimal model Conf3×(Fℓ∼)⊂Conf3(Fℓ∼). The integral points of the associated ‘cone’ Ξ:={WT⩾0}⊂Conf3×(Fℓ∼)∨(RT) parametrize a basis for O(Conf3(Fℓ∼))=⨁(Vα⊗Vβ⊗Vγ)G and encode the Littlewood–Richardson coefficients cαβγ. In the initial seed, the inequalities defining Ξ are exactly the tail positivity conditions of [18]. I exhibit a unimodular p∗ map that identifies W with the potential of Goncharov–Shen on Conf3×(Fℓ∼) [8] and Ξ with the Knutson–Tao hive cone [14]. This paper relies extensively on colour figures. Some references to colour may not be meaningful in the printed version, and we refer the reader to the online version which includes the colour figures.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12329</identifier><language>eng</language><subject>05E10 (secondary) ; 13F60 (primary) ; 14J33</subject><ispartof>Proceedings of the London Mathematical Society, 2020-09, Vol.121 (3), p.463-512</ispartof><rights>2020 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3099-2c21e769407d0e6cca7488b3b9d714171ff511f71781373a7e7c3f2b198896263</citedby><cites>FETCH-LOGICAL-c3099-2c21e769407d0e6cca7488b3b9d714171ff511f71781373a7e7c3f2b198896263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12329$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12329$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Magee, Timothy</creatorcontrib><title>Littlewood–Richardson coefficients via mirror symmetry for cluster varieties</title><title>Proceedings of the London Mathematical Society</title><description>I prove that the full Fock–Goncharov conjecture holds for Conf3×(Fℓ∼) — the configuration space of triples of decorated flags in generic position. As a key ingredient of this proof, I exhibit a maximal green sequence for the quiver of the initial seed. I compute the Landau–Ginzburg potential W on Conf3×(Fℓ∼)∨ associated to the partial minimal model Conf3×(Fℓ∼)⊂Conf3(Fℓ∼). The integral points of the associated ‘cone’ Ξ:={WT⩾0}⊂Conf3×(Fℓ∼)∨(RT) parametrize a basis for O(Conf3(Fℓ∼))=⨁(Vα⊗Vβ⊗Vγ)G and encode the Littlewood–Richardson coefficients cαβγ. In the initial seed, the inequalities defining Ξ are exactly the tail positivity conditions of [18]. I exhibit a unimodular p∗ map that identifies W with the potential of Goncharov–Shen on Conf3×(Fℓ∼) [8] and Ξ with the Knutson–Tao hive cone [14]. This paper relies extensively on colour figures. Some references to colour may not be meaningful in the printed version, and we refer the reader to the online version which includes the colour figures.</description><subject>05E10 (secondary)</subject><subject>13F60 (primary)</subject><subject>14J33</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMtKxDAYhYMoOI5ufIKuhY75kzRpljKoI9QLXsBdSdM_GGmnQ1Jn6M538A19Emesa1eHA985i4-QU6AzAGDnq6aNM2Cc6T0yASFpyoR43ScTSplIJUB2SI5ifKeUSs6zCbkrfN83uOm6-vvz69HbNxPq2C0T26Fz3npc9jFZe5O0PoQuJHFoW-zDkLhtsc1H7DEkaxM89h7jMTlwpol48pdT8nJ1-TxfpMX99c38okgtp1qnzDJAJbWgqqYorTVK5HnFK10rEKDAuQzAKVA5cMWNQmW5YxXoPNeSST4lZ-OvDV2MAV25Cr41YSiBljsT5c5E-WtiC8MIb3yDwz9k-VDcPo2bH6PYYvM</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Magee, Timothy</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202009</creationdate><title>Littlewood–Richardson coefficients via mirror symmetry for cluster varieties</title><author>Magee, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3099-2c21e769407d0e6cca7488b3b9d714171ff511f71781373a7e7c3f2b198896263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>05E10 (secondary)</topic><topic>13F60 (primary)</topic><topic>14J33</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magee, Timothy</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magee, Timothy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Littlewood–Richardson coefficients via mirror symmetry for cluster varieties</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2020-09</date><risdate>2020</risdate><volume>121</volume><issue>3</issue><spage>463</spage><epage>512</epage><pages>463-512</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>I prove that the full Fock–Goncharov conjecture holds for Conf3×(Fℓ∼) — the configuration space of triples of decorated flags in generic position. As a key ingredient of this proof, I exhibit a maximal green sequence for the quiver of the initial seed. I compute the Landau–Ginzburg potential W on Conf3×(Fℓ∼)∨ associated to the partial minimal model Conf3×(Fℓ∼)⊂Conf3(Fℓ∼). The integral points of the associated ‘cone’ Ξ:={WT⩾0}⊂Conf3×(Fℓ∼)∨(RT) parametrize a basis for O(Conf3(Fℓ∼))=⨁(Vα⊗Vβ⊗Vγ)G and encode the Littlewood–Richardson coefficients cαβγ. In the initial seed, the inequalities defining Ξ are exactly the tail positivity conditions of [18]. I exhibit a unimodular p∗ map that identifies W with the potential of Goncharov–Shen on Conf3×(Fℓ∼) [8] and Ξ with the Knutson–Tao hive cone [14]. This paper relies extensively on colour figures. Some references to colour may not be meaningful in the printed version, and we refer the reader to the online version which includes the colour figures.</abstract><doi>10.1112/plms.12329</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2020-09, Vol.121 (3), p.463-512
issn 0024-6115
1460-244X
language eng
recordid cdi_crossref_primary_10_1112_plms_12329
source Wiley Online Library Journals Frontfile Complete
subjects 05E10 (secondary)
13F60 (primary)
14J33
title Littlewood–Richardson coefficients via mirror symmetry for cluster varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Littlewood%E2%80%93Richardson%20coefficients%20via%20mirror%20symmetry%20for%20cluster%20varieties&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Magee,%20Timothy&rft.date=2020-09&rft.volume=121&rft.issue=3&rft.spage=463&rft.epage=512&rft.pages=463-512&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12329&rft_dat=%3Cwiley_cross%3EPLMS12329%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true