Refined estimates concerning sumsets contained in the roots of unity

We prove that the clique number of the Paley graph is at most p/2+1, and that any supposed additive decompositions of the set of quadratic residues can only come from co‐Sidon sets.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2021-03, Vol.122 (3), p.353-358
Hauptverfasser: Hanson, Brandon, Petridis, Giorgis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 3
container_start_page 353
container_title Proceedings of the London Mathematical Society
container_volume 122
creator Hanson, Brandon
Petridis, Giorgis
description We prove that the clique number of the Paley graph is at most p/2+1, and that any supposed additive decompositions of the set of quadratic residues can only come from co‐Sidon sets.
doi_str_mv 10.1112/plms.12322
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3752-9e49aed84801b4c939b51e5fc53a670152823ceacd76040043807dc7d4eaec043</originalsourceid><addsrcrecordid>eNp9j8tKxEAQRRtRMI5u_IKshYxV_chjKeMTIooPcBd6OhVtyXSG7gySvzeTuHZV1OXcog5j5whLROSX23YTlsgF5wcsQplCwqX8OGQRAJdJiqiO2UkI3wCQCqEidv1CjXVUxxR6u9E9hdh0zpB31n3GYbcJ1E9RryfMurj_oth33Rh3Tbxzth9O2VGj20Bnf3PB3m9v3lb3Sfl097C6KhMjMsWTgmShqc5lDriWphDFWiGpxiih0wxQ8ZwLQ9rUWQoSQIocstpktSRNZlwX7GK-a3wXgqem2vrxaT9UCNXev9r7V5P_COMM_9iWhn_I6rl8fJ07v7xrXh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Refined estimates concerning sumsets contained in the roots of unity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hanson, Brandon ; Petridis, Giorgis</creator><creatorcontrib>Hanson, Brandon ; Petridis, Giorgis</creatorcontrib><description>We prove that the clique number of the Paley graph is at most p/2+1, and that any supposed additive decompositions of the set of quadratic residues can only come from co‐Sidon sets.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12322</identifier><language>eng</language><subject>11B30 (primary)</subject><ispartof>Proceedings of the London Mathematical Society, 2021-03, Vol.122 (3), p.353-358</ispartof><rights>2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3752-9e49aed84801b4c939b51e5fc53a670152823ceacd76040043807dc7d4eaec043</citedby><cites>FETCH-LOGICAL-c3752-9e49aed84801b4c939b51e5fc53a670152823ceacd76040043807dc7d4eaec043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12322$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12322$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hanson, Brandon</creatorcontrib><creatorcontrib>Petridis, Giorgis</creatorcontrib><title>Refined estimates concerning sumsets contained in the roots of unity</title><title>Proceedings of the London Mathematical Society</title><description>We prove that the clique number of the Paley graph is at most p/2+1, and that any supposed additive decompositions of the set of quadratic residues can only come from co‐Sidon sets.</description><subject>11B30 (primary)</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKxEAQRRtRMI5u_IKshYxV_chjKeMTIooPcBd6OhVtyXSG7gySvzeTuHZV1OXcog5j5whLROSX23YTlsgF5wcsQplCwqX8OGQRAJdJiqiO2UkI3wCQCqEidv1CjXVUxxR6u9E9hdh0zpB31n3GYbcJ1E9RryfMurj_oth33Rh3Tbxzth9O2VGj20Bnf3PB3m9v3lb3Sfl097C6KhMjMsWTgmShqc5lDriWphDFWiGpxiih0wxQ8ZwLQ9rUWQoSQIocstpktSRNZlwX7GK-a3wXgqem2vrxaT9UCNXev9r7V5P_COMM_9iWhn_I6rl8fJ07v7xrXh4</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Hanson, Brandon</creator><creator>Petridis, Giorgis</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202103</creationdate><title>Refined estimates concerning sumsets contained in the roots of unity</title><author>Hanson, Brandon ; Petridis, Giorgis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3752-9e49aed84801b4c939b51e5fc53a670152823ceacd76040043807dc7d4eaec043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>11B30 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanson, Brandon</creatorcontrib><creatorcontrib>Petridis, Giorgis</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanson, Brandon</au><au>Petridis, Giorgis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined estimates concerning sumsets contained in the roots of unity</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2021-03</date><risdate>2021</risdate><volume>122</volume><issue>3</issue><spage>353</spage><epage>358</epage><pages>353-358</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>We prove that the clique number of the Paley graph is at most p/2+1, and that any supposed additive decompositions of the set of quadratic residues can only come from co‐Sidon sets.</abstract><doi>10.1112/plms.12322</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6115
ispartof Proceedings of the London Mathematical Society, 2021-03, Vol.122 (3), p.353-358
issn 0024-6115
1460-244X
language eng
recordid cdi_crossref_primary_10_1112_plms_12322
source Wiley Online Library Journals Frontfile Complete
subjects 11B30 (primary)
title Refined estimates concerning sumsets contained in the roots of unity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20estimates%20concerning%20sumsets%20contained%20in%20the%20roots%20of%20unity&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Hanson,%20Brandon&rft.date=2021-03&rft.volume=122&rft.issue=3&rft.spage=353&rft.epage=358&rft.pages=353-358&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12322&rft_dat=%3Cwiley_cross%3EPLMS12322%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true