Large‐type Artin groups are systolic
We prove that Artin groups from a class containing all large‐type Artin groups are systolic. This provides a concise yet precise description of their geometry. Immediate consequences are new results concerning large‐type Artin groups: biautomaticity; existence of EZ‐boundaries; the Novikov conjectur...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2020-01, Vol.120 (1), p.95-123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | 1 |
container_start_page | 95 |
container_title | Proceedings of the London Mathematical Society |
container_volume | 120 |
creator | Huang, Jingyin Osajda, Damian |
description | We prove that Artin groups from a class containing all large‐type Artin groups are systolic. This provides a concise yet precise description of their geometry. Immediate consequences are new results concerning large‐type Artin groups: biautomaticity; existence of EZ‐boundaries; the Novikov conjecture; descriptions of finitely presented subgroups, of virtually solvable subgroups, and of centralizers of elements; the Burghelea conjecture; existence of low‐dimensional models for classifying spaces for some families of subgroups. |
doi_str_mv | 10.1112/plms.12284 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_plms_12284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PLMS12284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2734-14b1288cd181ad887347cf59a1ce14946189b6272d438439f985cef2dc8df6b33</originalsourceid><addsrcrecordid>eNp9j81KxDAUhYMoWEc3PkFXLoSMucltmi6HwT_oMIIK7kKaJkOlY0tSke58BJ_RJ3HGunZ14PCdAx8h58DmAMCv-nYb58C5wgOSAEpGOeLLIUkY40glQHZMTmJ8ZYxJIbKEXJQmbNz359cw9i5dhKF5Szehe-9jaoJL4xiHrm3sKTnypo3u7C9n5Pnm-ml5R8v17f1yUVLLc4EUsAKulK1BgamV2nW59VlhwDrAAiWoopI85zUKhaLwhcqs87y2qvayEmJGLqdfG7oYg_O6D83WhFED03tDvTfUv4Y7GCb4o2nd-A-pH8rV47T5AZYxU1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large‐type Artin groups are systolic</title><source>Wiley Online Library All Journals</source><creator>Huang, Jingyin ; Osajda, Damian</creator><creatorcontrib>Huang, Jingyin ; Osajda, Damian</creatorcontrib><description>We prove that Artin groups from a class containing all large‐type Artin groups are systolic. This provides a concise yet precise description of their geometry. Immediate consequences are new results concerning large‐type Artin groups: biautomaticity; existence of EZ‐boundaries; the Novikov conjecture; descriptions of finitely presented subgroups, of virtually solvable subgroups, and of centralizers of elements; the Burghelea conjecture; existence of low‐dimensional models for classifying spaces for some families of subgroups.</description><identifier>ISSN: 0024-6115</identifier><identifier>EISSN: 1460-244X</identifier><identifier>DOI: 10.1112/plms.12284</identifier><language>eng</language><subject>20F36 ; 20F65 ; 20F67 (primary)</subject><ispartof>Proceedings of the London Mathematical Society, 2020-01, Vol.120 (1), p.95-123</ispartof><rights>2019 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2734-14b1288cd181ad887347cf59a1ce14946189b6272d438439f985cef2dc8df6b33</citedby><cites>FETCH-LOGICAL-c2734-14b1288cd181ad887347cf59a1ce14946189b6272d438439f985cef2dc8df6b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fplms.12284$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fplms.12284$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Huang, Jingyin</creatorcontrib><creatorcontrib>Osajda, Damian</creatorcontrib><title>Large‐type Artin groups are systolic</title><title>Proceedings of the London Mathematical Society</title><description>We prove that Artin groups from a class containing all large‐type Artin groups are systolic. This provides a concise yet precise description of their geometry. Immediate consequences are new results concerning large‐type Artin groups: biautomaticity; existence of EZ‐boundaries; the Novikov conjecture; descriptions of finitely presented subgroups, of virtually solvable subgroups, and of centralizers of elements; the Burghelea conjecture; existence of low‐dimensional models for classifying spaces for some families of subgroups.</description><subject>20F36</subject><subject>20F65</subject><subject>20F67 (primary)</subject><issn>0024-6115</issn><issn>1460-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAUhYMoWEc3PkFXLoSMucltmi6HwT_oMIIK7kKaJkOlY0tSke58BJ_RJ3HGunZ14PCdAx8h58DmAMCv-nYb58C5wgOSAEpGOeLLIUkY40glQHZMTmJ8ZYxJIbKEXJQmbNz359cw9i5dhKF5Szehe-9jaoJL4xiHrm3sKTnypo3u7C9n5Pnm-ml5R8v17f1yUVLLc4EUsAKulK1BgamV2nW59VlhwDrAAiWoopI85zUKhaLwhcqs87y2qvayEmJGLqdfG7oYg_O6D83WhFED03tDvTfUv4Y7GCb4o2nd-A-pH8rV47T5AZYxU1s</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Huang, Jingyin</creator><creator>Osajda, Damian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202001</creationdate><title>Large‐type Artin groups are systolic</title><author>Huang, Jingyin ; Osajda, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2734-14b1288cd181ad887347cf59a1ce14946189b6272d438439f985cef2dc8df6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>20F36</topic><topic>20F65</topic><topic>20F67 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jingyin</creatorcontrib><creatorcontrib>Osajda, Damian</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jingyin</au><au>Osajda, Damian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large‐type Artin groups are systolic</atitle><jtitle>Proceedings of the London Mathematical Society</jtitle><date>2020-01</date><risdate>2020</risdate><volume>120</volume><issue>1</issue><spage>95</spage><epage>123</epage><pages>95-123</pages><issn>0024-6115</issn><eissn>1460-244X</eissn><abstract>We prove that Artin groups from a class containing all large‐type Artin groups are systolic. This provides a concise yet precise description of their geometry. Immediate consequences are new results concerning large‐type Artin groups: biautomaticity; existence of EZ‐boundaries; the Novikov conjecture; descriptions of finitely presented subgroups, of virtually solvable subgroups, and of centralizers of elements; the Burghelea conjecture; existence of low‐dimensional models for classifying spaces for some families of subgroups.</abstract><doi>10.1112/plms.12284</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6115 |
ispartof | Proceedings of the London Mathematical Society, 2020-01, Vol.120 (1), p.95-123 |
issn | 0024-6115 1460-244X |
language | eng |
recordid | cdi_crossref_primary_10_1112_plms_12284 |
source | Wiley Online Library All Journals |
subjects | 20F36 20F65 20F67 (primary) |
title | Large‐type Artin groups are systolic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%E2%80%90type%20Artin%20groups%20are%20systolic&rft.jtitle=Proceedings%20of%20the%20London%20Mathematical%20Society&rft.au=Huang,%20Jingyin&rft.date=2020-01&rft.volume=120&rft.issue=1&rft.spage=95&rft.epage=123&rft.pages=95-123&rft.issn=0024-6115&rft.eissn=1460-244X&rft_id=info:doi/10.1112/plms.12284&rft_dat=%3Cwiley_cross%3EPLMS12284%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |