The local solubility for homogeneous polynomials with random coefficients over thin sets

Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2024-10, Vol.70 (4), p.n/a
Hauptverfasser: Lee, Heejong, Lee, Seungsu, Yeon, Kiseok
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Mathematika
container_volume 70
creator Lee, Heejong
Lee, Seungsu
Yeon, Kiseok
description Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the inner product, and νd,n:Rn→RN$\nu _{d,n}: \mathbb {R}^n\rightarrow \mathbb {R}^N$ denotes the Veronese embedding with N=n+d−1d$N=\binom{n+d-1}{d}$. Consider a variety Va$V_{\bm{a}}$ in Pn−1$\mathbb {P}^{n-1}$, defined by ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$. In this paper, we examine a set of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$, defined by A(A;P)={a∈ZN:P(a)=0,∥a∥∞⩽A},$$\begin{equation*} \mathfrak {A}(A;P)=\lbrace \bm{a}\in {\mathbb {Z}}^N:\ P(\bm{a})=0,\ \Vert \bm{a}\Vert _{\infty }\leqslant A\rbrace, \end{equation*}$$where P∈Z[x]$P\in \mathbb {Z}[{\bm{x}}]$ is a nonsingular form in N$N$ variables of degree k$k$ with 2⩽k⩽C(n,d)$2 \leqslant k\leqslant C({n,d})$ for some constant C(n,d)$C({n,d})$ depending at most on n$n$ and d$d$. Suppose P(a)=0$P(\bm{a})=0$ has a nontrivial integer solution. We confirm that the proportion of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$ in A(A)$\mathfrak {A}(A)$, whose associated equation ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$ is everywhere locally soluble, converges to a constant cP$c_P$ as A→∞$A\rightarrow \infty$. Moreover, for each place v$v$ of Q${\mathbb {Q}}$, if there exists a nonzero bv∈QvN$\bm{b}_v\in {\mathbb {Q}}_v^N$ such that P(bv)=0$P(\bm{b}_v)=0$ and the variety Vbv$V_{\bm{b}_v}$ in Pn−1$\mathbb {P}^{n-1}$ admits a smooth Qv$\mathbb {Q}_v$‐point, the constant cP$c_P$ is positive.
doi_str_mv 10.1112/mtk.12282
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_mtk_12282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MTK12282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1942-10b92601bb73993a7416bf0c7d27cdc99d1444c93bb6464788ac54331bcb68403</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUw8AdeGdL62U4cj6gCiihiCQNTFDsOMThxZadU-Ru-hS8jUFamt5x3de9B6BLIAgDoshveF0BpTo_QjBIOiZCcHqMZITRNUiHZKTqL8Y2QNMs5zNBL0RrsvK4cjt7tlHV2GHHjA259519Nb_wu4q13Y-87W7mI93Zocaj62ndYe9M0VlvTDxH7DxPw0Nr-6zOaIZ6jk2bizcXfnaPn25titU42T3f3q-tNomGqlgBRkmYElBJMSlYJDplqiBY1FbrWUtbAOdeSKZXxjIs8r3TKGQOl1TSBsDm6OuTq4GMMpim3wXZVGEsg5Y-TcnJS_jqZ2OWB3Vtnxv_B8rF4OHx8A01-ZTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The local solubility for homogeneous polynomials with random coefficients over thin sets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Heejong ; Lee, Seungsu ; Yeon, Kiseok</creator><creatorcontrib>Lee, Heejong ; Lee, Seungsu ; Yeon, Kiseok</creatorcontrib><description>Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the inner product, and νd,n:Rn→RN$\nu _{d,n}: \mathbb {R}^n\rightarrow \mathbb {R}^N$ denotes the Veronese embedding with N=n+d−1d$N=\binom{n+d-1}{d}$. Consider a variety Va$V_{\bm{a}}$ in Pn−1$\mathbb {P}^{n-1}$, defined by ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$. In this paper, we examine a set of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$, defined by A(A;P)={a∈ZN:P(a)=0,∥a∥∞⩽A},$$\begin{equation*} \mathfrak {A}(A;P)=\lbrace \bm{a}\in {\mathbb {Z}}^N:\ P(\bm{a})=0,\ \Vert \bm{a}\Vert _{\infty }\leqslant A\rbrace, \end{equation*}$$where P∈Z[x]$P\in \mathbb {Z}[{\bm{x}}]$ is a nonsingular form in N$N$ variables of degree k$k$ with 2⩽k⩽C(n,d)$2 \leqslant k\leqslant C({n,d})$ for some constant C(n,d)$C({n,d})$ depending at most on n$n$ and d$d$. Suppose P(a)=0$P(\bm{a})=0$ has a nontrivial integer solution. We confirm that the proportion of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$ in A(A)$\mathfrak {A}(A)$, whose associated equation ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$ is everywhere locally soluble, converges to a constant cP$c_P$ as A→∞$A\rightarrow \infty$. Moreover, for each place v$v$ of Q${\mathbb {Q}}$, if there exists a nonzero bv∈QvN$\bm{b}_v\in {\mathbb {Q}}_v^N$ such that P(bv)=0$P(\bm{b}_v)=0$ and the variety Vbv$V_{\bm{b}_v}$ in Pn−1$\mathbb {P}^{n-1}$ admits a smooth Qv$\mathbb {Q}_v$‐point, the constant cP$c_P$ is positive.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/mtk.12282</identifier><language>eng</language><ispartof>Mathematika, 2024-10, Vol.70 (4), p.n/a</ispartof><rights>2024 The Author(s). The publishing rights in this article are licensed to University College London under an exclusive licence. is published by the London Mathematical Society on behalf of University College London.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1942-10b92601bb73993a7416bf0c7d27cdc99d1444c93bb6464788ac54331bcb68403</cites><orcidid>0000-0002-6911-866X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fmtk.12282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fmtk.12282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lee, Heejong</creatorcontrib><creatorcontrib>Lee, Seungsu</creatorcontrib><creatorcontrib>Yeon, Kiseok</creatorcontrib><title>The local solubility for homogeneous polynomials with random coefficients over thin sets</title><title>Mathematika</title><description>Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the inner product, and νd,n:Rn→RN$\nu _{d,n}: \mathbb {R}^n\rightarrow \mathbb {R}^N$ denotes the Veronese embedding with N=n+d−1d$N=\binom{n+d-1}{d}$. Consider a variety Va$V_{\bm{a}}$ in Pn−1$\mathbb {P}^{n-1}$, defined by ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$. In this paper, we examine a set of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$, defined by A(A;P)={a∈ZN:P(a)=0,∥a∥∞⩽A},$$\begin{equation*} \mathfrak {A}(A;P)=\lbrace \bm{a}\in {\mathbb {Z}}^N:\ P(\bm{a})=0,\ \Vert \bm{a}\Vert _{\infty }\leqslant A\rbrace, \end{equation*}$$where P∈Z[x]$P\in \mathbb {Z}[{\bm{x}}]$ is a nonsingular form in N$N$ variables of degree k$k$ with 2⩽k⩽C(n,d)$2 \leqslant k\leqslant C({n,d})$ for some constant C(n,d)$C({n,d})$ depending at most on n$n$ and d$d$. Suppose P(a)=0$P(\bm{a})=0$ has a nontrivial integer solution. We confirm that the proportion of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$ in A(A)$\mathfrak {A}(A)$, whose associated equation ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$ is everywhere locally soluble, converges to a constant cP$c_P$ as A→∞$A\rightarrow \infty$. Moreover, for each place v$v$ of Q${\mathbb {Q}}$, if there exists a nonzero bv∈QvN$\bm{b}_v\in {\mathbb {Q}}_v^N$ such that P(bv)=0$P(\bm{b}_v)=0$ and the variety Vbv$V_{\bm{b}_v}$ in Pn−1$\mathbb {P}^{n-1}$ admits a smooth Qv$\mathbb {Q}_v$‐point, the constant cP$c_P$ is positive.</description><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUw8AdeGdL62U4cj6gCiihiCQNTFDsOMThxZadU-Ru-hS8jUFamt5x3de9B6BLIAgDoshveF0BpTo_QjBIOiZCcHqMZITRNUiHZKTqL8Y2QNMs5zNBL0RrsvK4cjt7tlHV2GHHjA259519Nb_wu4q13Y-87W7mI93Zocaj62ndYe9M0VlvTDxH7DxPw0Nr-6zOaIZ6jk2bizcXfnaPn25titU42T3f3q-tNomGqlgBRkmYElBJMSlYJDplqiBY1FbrWUtbAOdeSKZXxjIs8r3TKGQOl1TSBsDm6OuTq4GMMpim3wXZVGEsg5Y-TcnJS_jqZ2OWB3Vtnxv_B8rF4OHx8A01-ZTQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Lee, Heejong</creator><creator>Lee, Seungsu</creator><creator>Yeon, Kiseok</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6911-866X</orcidid></search><sort><creationdate>202410</creationdate><title>The local solubility for homogeneous polynomials with random coefficients over thin sets</title><author>Lee, Heejong ; Lee, Seungsu ; Yeon, Kiseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1942-10b92601bb73993a7416bf0c7d27cdc99d1444c93bb6464788ac54331bcb68403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Heejong</creatorcontrib><creatorcontrib>Lee, Seungsu</creatorcontrib><creatorcontrib>Yeon, Kiseok</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Heejong</au><au>Lee, Seungsu</au><au>Yeon, Kiseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The local solubility for homogeneous polynomials with random coefficients over thin sets</atitle><jtitle>Mathematika</jtitle><date>2024-10</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><epage>n/a</epage><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the inner product, and νd,n:Rn→RN$\nu _{d,n}: \mathbb {R}^n\rightarrow \mathbb {R}^N$ denotes the Veronese embedding with N=n+d−1d$N=\binom{n+d-1}{d}$. Consider a variety Va$V_{\bm{a}}$ in Pn−1$\mathbb {P}^{n-1}$, defined by ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$. In this paper, we examine a set of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$, defined by A(A;P)={a∈ZN:P(a)=0,∥a∥∞⩽A},$$\begin{equation*} \mathfrak {A}(A;P)=\lbrace \bm{a}\in {\mathbb {Z}}^N:\ P(\bm{a})=0,\ \Vert \bm{a}\Vert _{\infty }\leqslant A\rbrace, \end{equation*}$$where P∈Z[x]$P\in \mathbb {Z}[{\bm{x}}]$ is a nonsingular form in N$N$ variables of degree k$k$ with 2⩽k⩽C(n,d)$2 \leqslant k\leqslant C({n,d})$ for some constant C(n,d)$C({n,d})$ depending at most on n$n$ and d$d$. Suppose P(a)=0$P(\bm{a})=0$ has a nontrivial integer solution. We confirm that the proportion of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$ in A(A)$\mathfrak {A}(A)$, whose associated equation ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$ is everywhere locally soluble, converges to a constant cP$c_P$ as A→∞$A\rightarrow \infty$. Moreover, for each place v$v$ of Q${\mathbb {Q}}$, if there exists a nonzero bv∈QvN$\bm{b}_v\in {\mathbb {Q}}_v^N$ such that P(bv)=0$P(\bm{b}_v)=0$ and the variety Vbv$V_{\bm{b}_v}$ in Pn−1$\mathbb {P}^{n-1}$ admits a smooth Qv$\mathbb {Q}_v$‐point, the constant cP$c_P$ is positive.</abstract><doi>10.1112/mtk.12282</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6911-866X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2024-10, Vol.70 (4), p.n/a
issn 0025-5793
2041-7942
language eng
recordid cdi_crossref_primary_10_1112_mtk_12282
source Wiley Online Library Journals Frontfile Complete
title The local solubility for homogeneous polynomials with random coefficients over thin sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20local%20solubility%20for%20homogeneous%20polynomials%20with%20random%20coefficients%20over%20thin%C2%A0sets&rft.jtitle=Mathematika&rft.au=Lee,%20Heejong&rft.date=2024-10&rft.volume=70&rft.issue=4&rft.epage=n/a&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/mtk.12282&rft_dat=%3Cwiley_cross%3EMTK12282%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true