The local solubility for homogeneous polynomials with random coefficients over thin sets
Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the i...
Gespeichert in:
Veröffentlicht in: | Mathematika 2024-10, Vol.70 (4), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Mathematika |
container_volume | 70 |
creator | Lee, Heejong Lee, Seungsu Yeon, Kiseok |
description | Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the inner product, and νd,n:Rn→RN$\nu _{d,n}: \mathbb {R}^n\rightarrow \mathbb {R}^N$ denotes the Veronese embedding with N=n+d−1d$N=\binom{n+d-1}{d}$. Consider a variety Va$V_{\bm{a}}$ in Pn−1$\mathbb {P}^{n-1}$, defined by ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$. In this paper, we examine a set of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$, defined by
A(A;P)={a∈ZN:P(a)=0,∥a∥∞⩽A},$$\begin{equation*} \mathfrak {A}(A;P)=\lbrace \bm{a}\in {\mathbb {Z}}^N:\ P(\bm{a})=0,\ \Vert \bm{a}\Vert _{\infty }\leqslant A\rbrace, \end{equation*}$$where P∈Z[x]$P\in \mathbb {Z}[{\bm{x}}]$ is a nonsingular form in N$N$ variables of degree k$k$ with 2⩽k⩽C(n,d)$2 \leqslant k\leqslant C({n,d})$ for some constant C(n,d)$C({n,d})$ depending at most on n$n$ and d$d$. Suppose P(a)=0$P(\bm{a})=0$ has a nontrivial integer solution. We confirm that the proportion of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$ in A(A)$\mathfrak {A}(A)$, whose associated equation ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$ is everywhere locally soluble, converges to a constant cP$c_P$ as A→∞$A\rightarrow \infty$. Moreover, for each place v$v$ of Q${\mathbb {Q}}$, if there exists a nonzero bv∈QvN$\bm{b}_v\in {\mathbb {Q}}_v^N$ such that P(bv)=0$P(\bm{b}_v)=0$ and the variety Vbv$V_{\bm{b}_v}$ in Pn−1$\mathbb {P}^{n-1}$ admits a smooth Qv$\mathbb {Q}_v$‐point, the constant cP$c_P$ is positive. |
doi_str_mv | 10.1112/mtk.12282 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_mtk_12282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MTK12282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1942-10b92601bb73993a7416bf0c7d27cdc99d1444c93bb6464788ac54331bcb68403</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUw8AdeGdL62U4cj6gCiihiCQNTFDsOMThxZadU-Ru-hS8jUFamt5x3de9B6BLIAgDoshveF0BpTo_QjBIOiZCcHqMZITRNUiHZKTqL8Y2QNMs5zNBL0RrsvK4cjt7tlHV2GHHjA259519Nb_wu4q13Y-87W7mI93Zocaj62ndYe9M0VlvTDxH7DxPw0Nr-6zOaIZ6jk2bizcXfnaPn25titU42T3f3q-tNomGqlgBRkmYElBJMSlYJDplqiBY1FbrWUtbAOdeSKZXxjIs8r3TKGQOl1TSBsDm6OuTq4GMMpim3wXZVGEsg5Y-TcnJS_jqZ2OWB3Vtnxv_B8rF4OHx8A01-ZTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The local solubility for homogeneous polynomials with random coefficients over thin sets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Heejong ; Lee, Seungsu ; Yeon, Kiseok</creator><creatorcontrib>Lee, Heejong ; Lee, Seungsu ; Yeon, Kiseok</creatorcontrib><description>Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the inner product, and νd,n:Rn→RN$\nu _{d,n}: \mathbb {R}^n\rightarrow \mathbb {R}^N$ denotes the Veronese embedding with N=n+d−1d$N=\binom{n+d-1}{d}$. Consider a variety Va$V_{\bm{a}}$ in Pn−1$\mathbb {P}^{n-1}$, defined by ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$. In this paper, we examine a set of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$, defined by
A(A;P)={a∈ZN:P(a)=0,∥a∥∞⩽A},$$\begin{equation*} \mathfrak {A}(A;P)=\lbrace \bm{a}\in {\mathbb {Z}}^N:\ P(\bm{a})=0,\ \Vert \bm{a}\Vert _{\infty }\leqslant A\rbrace, \end{equation*}$$where P∈Z[x]$P\in \mathbb {Z}[{\bm{x}}]$ is a nonsingular form in N$N$ variables of degree k$k$ with 2⩽k⩽C(n,d)$2 \leqslant k\leqslant C({n,d})$ for some constant C(n,d)$C({n,d})$ depending at most on n$n$ and d$d$. Suppose P(a)=0$P(\bm{a})=0$ has a nontrivial integer solution. We confirm that the proportion of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$ in A(A)$\mathfrak {A}(A)$, whose associated equation ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$ is everywhere locally soluble, converges to a constant cP$c_P$ as A→∞$A\rightarrow \infty$. Moreover, for each place v$v$ of Q${\mathbb {Q}}$, if there exists a nonzero bv∈QvN$\bm{b}_v\in {\mathbb {Q}}_v^N$ such that P(bv)=0$P(\bm{b}_v)=0$ and the variety Vbv$V_{\bm{b}_v}$ in Pn−1$\mathbb {P}^{n-1}$ admits a smooth Qv$\mathbb {Q}_v$‐point, the constant cP$c_P$ is positive.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/mtk.12282</identifier><language>eng</language><ispartof>Mathematika, 2024-10, Vol.70 (4), p.n/a</ispartof><rights>2024 The Author(s). The publishing rights in this article are licensed to University College London under an exclusive licence. is published by the London Mathematical Society on behalf of University College London.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1942-10b92601bb73993a7416bf0c7d27cdc99d1444c93bb6464788ac54331bcb68403</cites><orcidid>0000-0002-6911-866X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fmtk.12282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fmtk.12282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lee, Heejong</creatorcontrib><creatorcontrib>Lee, Seungsu</creatorcontrib><creatorcontrib>Yeon, Kiseok</creatorcontrib><title>The local solubility for homogeneous polynomials with random coefficients over thin sets</title><title>Mathematika</title><description>Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the inner product, and νd,n:Rn→RN$\nu _{d,n}: \mathbb {R}^n\rightarrow \mathbb {R}^N$ denotes the Veronese embedding with N=n+d−1d$N=\binom{n+d-1}{d}$. Consider a variety Va$V_{\bm{a}}$ in Pn−1$\mathbb {P}^{n-1}$, defined by ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$. In this paper, we examine a set of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$, defined by
A(A;P)={a∈ZN:P(a)=0,∥a∥∞⩽A},$$\begin{equation*} \mathfrak {A}(A;P)=\lbrace \bm{a}\in {\mathbb {Z}}^N:\ P(\bm{a})=0,\ \Vert \bm{a}\Vert _{\infty }\leqslant A\rbrace, \end{equation*}$$where P∈Z[x]$P\in \mathbb {Z}[{\bm{x}}]$ is a nonsingular form in N$N$ variables of degree k$k$ with 2⩽k⩽C(n,d)$2 \leqslant k\leqslant C({n,d})$ for some constant C(n,d)$C({n,d})$ depending at most on n$n$ and d$d$. Suppose P(a)=0$P(\bm{a})=0$ has a nontrivial integer solution. We confirm that the proportion of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$ in A(A)$\mathfrak {A}(A)$, whose associated equation ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$ is everywhere locally soluble, converges to a constant cP$c_P$ as A→∞$A\rightarrow \infty$. Moreover, for each place v$v$ of Q${\mathbb {Q}}$, if there exists a nonzero bv∈QvN$\bm{b}_v\in {\mathbb {Q}}_v^N$ such that P(bv)=0$P(\bm{b}_v)=0$ and the variety Vbv$V_{\bm{b}_v}$ in Pn−1$\mathbb {P}^{n-1}$ admits a smooth Qv$\mathbb {Q}_v$‐point, the constant cP$c_P$ is positive.</description><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUw8AdeGdL62U4cj6gCiihiCQNTFDsOMThxZadU-Ru-hS8jUFamt5x3de9B6BLIAgDoshveF0BpTo_QjBIOiZCcHqMZITRNUiHZKTqL8Y2QNMs5zNBL0RrsvK4cjt7tlHV2GHHjA259519Nb_wu4q13Y-87W7mI93Zocaj62ndYe9M0VlvTDxH7DxPw0Nr-6zOaIZ6jk2bizcXfnaPn25titU42T3f3q-tNomGqlgBRkmYElBJMSlYJDplqiBY1FbrWUtbAOdeSKZXxjIs8r3TKGQOl1TSBsDm6OuTq4GMMpim3wXZVGEsg5Y-TcnJS_jqZ2OWB3Vtnxv_B8rF4OHx8A01-ZTQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Lee, Heejong</creator><creator>Lee, Seungsu</creator><creator>Yeon, Kiseok</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6911-866X</orcidid></search><sort><creationdate>202410</creationdate><title>The local solubility for homogeneous polynomials with random coefficients over thin sets</title><author>Lee, Heejong ; Lee, Seungsu ; Yeon, Kiseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1942-10b92601bb73993a7416bf0c7d27cdc99d1444c93bb6464788ac54331bcb68403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Heejong</creatorcontrib><creatorcontrib>Lee, Seungsu</creatorcontrib><creatorcontrib>Yeon, Kiseok</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Heejong</au><au>Lee, Seungsu</au><au>Yeon, Kiseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The local solubility for homogeneous polynomials with random coefficients over thin sets</atitle><jtitle>Mathematika</jtitle><date>2024-10</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><epage>n/a</epage><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>Let d$d$ and n$n$ be natural numbers greater or equal to 2. Let ⟨a,νd,n(x)⟩∈Z[x]$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle \in \mathbb {Z}[\bm{x}]$ be a homogeneous polynomial in n$n$ variables of degree d$d$ with integer coefficients a$\bm{a}$, where ⟨·,·⟩$\langle \cdot,\cdot \rangle$ denotes the inner product, and νd,n:Rn→RN$\nu _{d,n}: \mathbb {R}^n\rightarrow \mathbb {R}^N$ denotes the Veronese embedding with N=n+d−1d$N=\binom{n+d-1}{d}$. Consider a variety Va$V_{\bm{a}}$ in Pn−1$\mathbb {P}^{n-1}$, defined by ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$. In this paper, we examine a set of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$, defined by
A(A;P)={a∈ZN:P(a)=0,∥a∥∞⩽A},$$\begin{equation*} \mathfrak {A}(A;P)=\lbrace \bm{a}\in {\mathbb {Z}}^N:\ P(\bm{a})=0,\ \Vert \bm{a}\Vert _{\infty }\leqslant A\rbrace, \end{equation*}$$where P∈Z[x]$P\in \mathbb {Z}[{\bm{x}}]$ is a nonsingular form in N$N$ variables of degree k$k$ with 2⩽k⩽C(n,d)$2 \leqslant k\leqslant C({n,d})$ for some constant C(n,d)$C({n,d})$ depending at most on n$n$ and d$d$. Suppose P(a)=0$P(\bm{a})=0$ has a nontrivial integer solution. We confirm that the proportion of integer vectors a∈ZN$\bm{a}\in {\mathbb {Z}}^N$ in A(A)$\mathfrak {A}(A)$, whose associated equation ⟨a,νd,n(x)⟩=0$\langle \bm{a}, \nu _{d,n}(\bm{x})\rangle =0$ is everywhere locally soluble, converges to a constant cP$c_P$ as A→∞$A\rightarrow \infty$. Moreover, for each place v$v$ of Q${\mathbb {Q}}$, if there exists a nonzero bv∈QvN$\bm{b}_v\in {\mathbb {Q}}_v^N$ such that P(bv)=0$P(\bm{b}_v)=0$ and the variety Vbv$V_{\bm{b}_v}$ in Pn−1$\mathbb {P}^{n-1}$ admits a smooth Qv$\mathbb {Q}_v$‐point, the constant cP$c_P$ is positive.</abstract><doi>10.1112/mtk.12282</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6911-866X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5793 |
ispartof | Mathematika, 2024-10, Vol.70 (4), p.n/a |
issn | 0025-5793 2041-7942 |
language | eng |
recordid | cdi_crossref_primary_10_1112_mtk_12282 |
source | Wiley Online Library Journals Frontfile Complete |
title | The local solubility for homogeneous polynomials with random coefficients over thin sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20local%20solubility%20for%20homogeneous%20polynomials%20with%20random%20coefficients%20over%20thin%C2%A0sets&rft.jtitle=Mathematika&rft.au=Lee,%20Heejong&rft.date=2024-10&rft.volume=70&rft.issue=4&rft.epage=n/a&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/mtk.12282&rft_dat=%3Cwiley_cross%3EMTK12282%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |