Sharpening Littlewood subordination principle with univalent symbol
Let u$u$ be a subharmonic function on the open unit disc D$\mathbb {D}$, centered at the origin of the complex plane, and let φ:D→D$\varphi:\mathbb {D}\rightarrow \mathbb {D}$ be a holomorphic function such that φ(0)=0$\varphi (0)=0$. A classical result, known as Littlewood subordination principle,...
Gespeichert in:
Veröffentlicht in: | Mathematika 2024-07, Vol.70 (3), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let u$u$ be a subharmonic function on the open unit disc D$\mathbb {D}$, centered at the origin of the complex plane, and let φ:D→D$\varphi:\mathbb {D}\rightarrow \mathbb {D}$ be a holomorphic function such that φ(0)=0$\varphi (0)=0$. A classical result, known as Littlewood subordination principle, states Iu∘φ(r)⩽Iu(r)$\mathrm{I}_{u\circ \varphi }(r)\leqslant \mathrm{I}_u(r)$, where Iu∘φ(r)$\mathrm{I}_{u\circ \varphi }(r)$ and Iu(r)$\mathrm{I}_u(r)$ are integral means over the circle of radius 0⩽r |
---|---|
ISSN: | 0025-5793 2041-7942 |
DOI: | 10.1112/mtk.12254 |