Sharpening Littlewood subordination principle with univalent symbol

Let u$u$ be a subharmonic function on the open unit disc D$\mathbb {D}$, centered at the origin of the complex plane, and let φ:D→D$\varphi:\mathbb {D}\rightarrow \mathbb {D}$ be a holomorphic function such that φ(0)=0$\varphi (0)=0$. A classical result, known as Littlewood subordination principle,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2024-07, Vol.70 (3), p.n/a
Hauptverfasser: Dmitrović, Dušica, Karapetrović, Boban
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let u$u$ be a subharmonic function on the open unit disc D$\mathbb {D}$, centered at the origin of the complex plane, and let φ:D→D$\varphi:\mathbb {D}\rightarrow \mathbb {D}$ be a holomorphic function such that φ(0)=0$\varphi (0)=0$. A classical result, known as Littlewood subordination principle, states Iu∘φ(r)⩽Iu(r)$\mathrm{I}_{u\circ \varphi }(r)\leqslant \mathrm{I}_u(r)$, where Iu∘φ(r)$\mathrm{I}_{u\circ \varphi }(r)$ and Iu(r)$\mathrm{I}_u(r)$ are integral means over the circle of radius 0⩽r
ISSN:0025-5793
2041-7942
DOI:10.1112/mtk.12254