Zeros of dirichlet L‐functions near the critical line

We prove an upper bound on the density of zeros very close to the critical line of the family of Dirichlet L‐functions of modulus q at height T. To do this, we derive an asymptotic for the twisted second moment of Dirichlet L‐functions uniformly in q and t. As a second application of the asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2024-01, Vol.70 (1), p.n/a
1. Verfasser: Dickinson, George
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Mathematika
container_volume 70
creator Dickinson, George
description We prove an upper bound on the density of zeros very close to the critical line of the family of Dirichlet L‐functions of modulus q at height T. To do this, we derive an asymptotic for the twisted second moment of Dirichlet L‐functions uniformly in q and t. As a second application of the asymptotic formula, we prove that, for every integer q, at least 38.2% of zeros of the primitive Dirichlet L‐functions of modulus q lie on the critical line.
doi_str_mv 10.1112/mtk.12239
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_mtk_12239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MTK12239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2649-3efb8741044f9adce000447052848bfa07d361d0a58e1c58442c00508d5272d3</originalsourceid><addsrcrecordid>eNp1jztOxDAURS0EEmGgYAduKTLz7NixU6IRPxFEk4rG8vijMWQSZBuh6VgCa2QlBEJLdW9x3tM9CJ0TWBJC6GqXX5aE0qo5QAUFRkrRMHqICgDKSy6a6hidpPQMwGvJSIHEk4tjwqPHNsRgtr3LuP36-PRvg8lhHBIenI44bx02MeRgdI_7MLhTdOR1n9zZXy5Qd33VrW_L9vHmbn3ZlobWrCkr5zdSMAKM-UZb4wCmKoBTyeTGaxC2qokFzaUjhkvGqJm2gbScCmqrBbqY35ppZYrOq9cYdjruFQH1I6wmYfUrPLGrmX0Pvdv_D6qH7n6--AYcV1b1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Zeros of dirichlet L‐functions near the critical line</title><source>Wiley Online Library All Journals</source><creator>Dickinson, George</creator><creatorcontrib>Dickinson, George</creatorcontrib><description>We prove an upper bound on the density of zeros very close to the critical line of the family of Dirichlet L‐functions of modulus q at height T. To do this, we derive an asymptotic for the twisted second moment of Dirichlet L‐functions uniformly in q and t. As a second application of the asymptotic formula, we prove that, for every integer q, at least 38.2% of zeros of the primitive Dirichlet L‐functions of modulus q lie on the critical line.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/mtk.12239</identifier><language>eng</language><ispartof>Mathematika, 2024-01, Vol.70 (1), p.n/a</ispartof><rights>2024 The Authors. is copyright © University College London and published by the London Mathematical Society on behalf of University College London.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2649-3efb8741044f9adce000447052848bfa07d361d0a58e1c58442c00508d5272d3</cites><orcidid>0000-0002-4248-9858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fmtk.12239$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fmtk.12239$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Dickinson, George</creatorcontrib><title>Zeros of dirichlet L‐functions near the critical line</title><title>Mathematika</title><description>We prove an upper bound on the density of zeros very close to the critical line of the family of Dirichlet L‐functions of modulus q at height T. To do this, we derive an asymptotic for the twisted second moment of Dirichlet L‐functions uniformly in q and t. As a second application of the asymptotic formula, we prove that, for every integer q, at least 38.2% of zeros of the primitive Dirichlet L‐functions of modulus q lie on the critical line.</description><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1jztOxDAURS0EEmGgYAduKTLz7NixU6IRPxFEk4rG8vijMWQSZBuh6VgCa2QlBEJLdW9x3tM9CJ0TWBJC6GqXX5aE0qo5QAUFRkrRMHqICgDKSy6a6hidpPQMwGvJSIHEk4tjwqPHNsRgtr3LuP36-PRvg8lhHBIenI44bx02MeRgdI_7MLhTdOR1n9zZXy5Qd33VrW_L9vHmbn3ZlobWrCkr5zdSMAKM-UZb4wCmKoBTyeTGaxC2qokFzaUjhkvGqJm2gbScCmqrBbqY35ppZYrOq9cYdjruFQH1I6wmYfUrPLGrmX0Pvdv_D6qH7n6--AYcV1b1</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Dickinson, George</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4248-9858</orcidid></search><sort><creationdate>202401</creationdate><title>Zeros of dirichlet L‐functions near the critical line</title><author>Dickinson, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2649-3efb8741044f9adce000447052848bfa07d361d0a58e1c58442c00508d5272d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickinson, George</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickinson, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zeros of dirichlet L‐functions near the critical line</atitle><jtitle>Mathematika</jtitle><date>2024-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><epage>n/a</epage><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>We prove an upper bound on the density of zeros very close to the critical line of the family of Dirichlet L‐functions of modulus q at height T. To do this, we derive an asymptotic for the twisted second moment of Dirichlet L‐functions uniformly in q and t. As a second application of the asymptotic formula, we prove that, for every integer q, at least 38.2% of zeros of the primitive Dirichlet L‐functions of modulus q lie on the critical line.</abstract><doi>10.1112/mtk.12239</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-4248-9858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2024-01, Vol.70 (1), p.n/a
issn 0025-5793
2041-7942
language eng
recordid cdi_crossref_primary_10_1112_mtk_12239
source Wiley Online Library All Journals
title Zeros of dirichlet L‐functions near the critical line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zeros%20of%20dirichlet%20L%E2%80%90functions%20near%20the%20critical%20line&rft.jtitle=Mathematika&rft.au=Dickinson,%20George&rft.date=2024-01&rft.volume=70&rft.issue=1&rft.epage=n/a&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/mtk.12239&rft_dat=%3Cwiley_cross%3EMTK12239%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true