Injectivity of satellite operators in knot concordance

Let P be a knot in a solid torus, K be a knot in S3 and P(K) be the satellite knot of K with pattern P. This defines an operator P:K→K on the set of knot types and induces a satellite operator P:C→C on the set of smooth concordance classes of knots. There has been considerable interest in whether ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of topology 2014-12, Vol.7 (4), p.948-964
Hauptverfasser: Cochran, Tim D., Davis, Christopher W., Ray, Arunima
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 964
container_issue 4
container_start_page 948
container_title Journal of topology
container_volume 7
creator Cochran, Tim D.
Davis, Christopher W.
Ray, Arunima
description Let P be a knot in a solid torus, K be a knot in S3 and P(K) be the satellite knot of K with pattern P. This defines an operator P:K→K on the set of knot types and induces a satellite operator P:C→C on the set of smooth concordance classes of knots. There has been considerable interest in whether certain such functions are injective. For example, it is a famous open problem whether the Whitehead double operator is weakly injective (an operator is called weakly injective if P(K)=P(0) implies K=0 where 0 is the class of the trivial knot). We prove that, modulo the smooth four‐dimensional Poincaré Conjecture, any strong winding number 1 satellite operator is injective on C. More precisely, if P has strong winding number 1 and P(K)=P(J), then K is smoothly concordant to J in S3×[0,1] equipped with a possibly exotic smooth structure. We also prove that any strong winding number 1 operator is injective on the topological knot concordance group. If P(0) is unknotted, then strong winding number 1 is the same as (ordinary) winding number 1. More generally, we show that any satellite operator with non‐zero winding number n induces an injective function on the set of Z[1/n]‐concordance classes of knots. We deduce some analogous results for links.
doi_str_mv 10.1112/jtopol/jtu003
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jtopol_jtu003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TOPO0948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3208-672d9d51a736d132778fa8b7c4d72d3ca995f29fe37c877415e740cb1453a7923</originalsourceid><addsrcrecordid>eNp9j81KxDAYRYMoOI4u3ecFqkm-NGmWMvgzMFAX4zpk0gRSa1OSqMzbW6nM0tW9cA8XDkK3lNxRStl9X-IUhzk-CYEztKKyhqrhjJ-fOhWX6CrnnhDBCIgVEtuxd7aEr1COOHqcTXHDEIrDcXLJlJgyDiN-H2PBNo42ps6M1l2jC2-G7G7-co3enh73m5dq1z5vNw-7ygIjTSUk61RXUyNBdBSYlI03zUFa3s0LWKNU7ZnyDqRtpOS0dpITe6C8BiMVgzWqll-bYs7JeT2l8GHSUVOif6X1Iq0X6ZmHhf8Ogzv-D-t9-9oSxRv4AcaLXcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Injectivity of satellite operators in knot concordance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cochran, Tim D. ; Davis, Christopher W. ; Ray, Arunima</creator><creatorcontrib>Cochran, Tim D. ; Davis, Christopher W. ; Ray, Arunima</creatorcontrib><description>Let P be a knot in a solid torus, K be a knot in S3 and P(K) be the satellite knot of K with pattern P. This defines an operator P:K→K on the set of knot types and induces a satellite operator P:C→C on the set of smooth concordance classes of knots. There has been considerable interest in whether certain such functions are injective. For example, it is a famous open problem whether the Whitehead double operator is weakly injective (an operator is called weakly injective if P(K)=P(0) implies K=0 where 0 is the class of the trivial knot). We prove that, modulo the smooth four‐dimensional Poincaré Conjecture, any strong winding number 1 satellite operator is injective on C. More precisely, if P has strong winding number 1 and P(K)=P(J), then K is smoothly concordant to J in S3×[0,1] equipped with a possibly exotic smooth structure. We also prove that any strong winding number 1 operator is injective on the topological knot concordance group. If P(0) is unknotted, then strong winding number 1 is the same as (ordinary) winding number 1. More generally, we show that any satellite operator with non‐zero winding number n induces an injective function on the set of Z[1/n]‐concordance classes of knots. We deduce some analogous results for links.</description><identifier>ISSN: 1753-8416</identifier><identifier>EISSN: 1753-8424</identifier><identifier>DOI: 10.1112/jtopol/jtu003</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of topology, 2014-12, Vol.7 (4), p.948-964</ispartof><rights>2014 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3208-672d9d51a736d132778fa8b7c4d72d3ca995f29fe37c877415e740cb1453a7923</citedby><cites>FETCH-LOGICAL-c3208-672d9d51a736d132778fa8b7c4d72d3ca995f29fe37c877415e740cb1453a7923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjtopol%2Fjtu003$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjtopol%2Fjtu003$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Cochran, Tim D.</creatorcontrib><creatorcontrib>Davis, Christopher W.</creatorcontrib><creatorcontrib>Ray, Arunima</creatorcontrib><title>Injectivity of satellite operators in knot concordance</title><title>Journal of topology</title><description>Let P be a knot in a solid torus, K be a knot in S3 and P(K) be the satellite knot of K with pattern P. This defines an operator P:K→K on the set of knot types and induces a satellite operator P:C→C on the set of smooth concordance classes of knots. There has been considerable interest in whether certain such functions are injective. For example, it is a famous open problem whether the Whitehead double operator is weakly injective (an operator is called weakly injective if P(K)=P(0) implies K=0 where 0 is the class of the trivial knot). We prove that, modulo the smooth four‐dimensional Poincaré Conjecture, any strong winding number 1 satellite operator is injective on C. More precisely, if P has strong winding number 1 and P(K)=P(J), then K is smoothly concordant to J in S3×[0,1] equipped with a possibly exotic smooth structure. We also prove that any strong winding number 1 operator is injective on the topological knot concordance group. If P(0) is unknotted, then strong winding number 1 is the same as (ordinary) winding number 1. More generally, we show that any satellite operator with non‐zero winding number n induces an injective function on the set of Z[1/n]‐concordance classes of knots. We deduce some analogous results for links.</description><issn>1753-8416</issn><issn>1753-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9j81KxDAYRYMoOI4u3ecFqkm-NGmWMvgzMFAX4zpk0gRSa1OSqMzbW6nM0tW9cA8XDkK3lNxRStl9X-IUhzk-CYEztKKyhqrhjJ-fOhWX6CrnnhDBCIgVEtuxd7aEr1COOHqcTXHDEIrDcXLJlJgyDiN-H2PBNo42ps6M1l2jC2-G7G7-co3enh73m5dq1z5vNw-7ygIjTSUk61RXUyNBdBSYlI03zUFa3s0LWKNU7ZnyDqRtpOS0dpITe6C8BiMVgzWqll-bYs7JeT2l8GHSUVOif6X1Iq0X6ZmHhf8Ogzv-D-t9-9oSxRv4AcaLXcA</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Cochran, Tim D.</creator><creator>Davis, Christopher W.</creator><creator>Ray, Arunima</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201412</creationdate><title>Injectivity of satellite operators in knot concordance</title><author>Cochran, Tim D. ; Davis, Christopher W. ; Ray, Arunima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3208-672d9d51a736d132778fa8b7c4d72d3ca995f29fe37c877415e740cb1453a7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochran, Tim D.</creatorcontrib><creatorcontrib>Davis, Christopher W.</creatorcontrib><creatorcontrib>Ray, Arunima</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochran, Tim D.</au><au>Davis, Christopher W.</au><au>Ray, Arunima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injectivity of satellite operators in knot concordance</atitle><jtitle>Journal of topology</jtitle><date>2014-12</date><risdate>2014</risdate><volume>7</volume><issue>4</issue><spage>948</spage><epage>964</epage><pages>948-964</pages><issn>1753-8416</issn><eissn>1753-8424</eissn><abstract>Let P be a knot in a solid torus, K be a knot in S3 and P(K) be the satellite knot of K with pattern P. This defines an operator P:K→K on the set of knot types and induces a satellite operator P:C→C on the set of smooth concordance classes of knots. There has been considerable interest in whether certain such functions are injective. For example, it is a famous open problem whether the Whitehead double operator is weakly injective (an operator is called weakly injective if P(K)=P(0) implies K=0 where 0 is the class of the trivial knot). We prove that, modulo the smooth four‐dimensional Poincaré Conjecture, any strong winding number 1 satellite operator is injective on C. More precisely, if P has strong winding number 1 and P(K)=P(J), then K is smoothly concordant to J in S3×[0,1] equipped with a possibly exotic smooth structure. We also prove that any strong winding number 1 operator is injective on the topological knot concordance group. If P(0) is unknotted, then strong winding number 1 is the same as (ordinary) winding number 1. More generally, we show that any satellite operator with non‐zero winding number n induces an injective function on the set of Z[1/n]‐concordance classes of knots. We deduce some analogous results for links.</abstract><pub>Oxford University Press</pub><doi>10.1112/jtopol/jtu003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1753-8416
ispartof Journal of topology, 2014-12, Vol.7 (4), p.948-964
issn 1753-8416
1753-8424
language eng
recordid cdi_crossref_primary_10_1112_jtopol_jtu003
source Wiley Online Library Journals Frontfile Complete
title Injectivity of satellite operators in knot concordance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injectivity%20of%20satellite%20operators%20in%20knot%20concordance&rft.jtitle=Journal%20of%20topology&rft.au=Cochran,%20Tim%20D.&rft.date=2014-12&rft.volume=7&rft.issue=4&rft.spage=948&rft.epage=964&rft.pages=948-964&rft.issn=1753-8416&rft.eissn=1753-8424&rft_id=info:doi/10.1112/jtopol/jtu003&rft_dat=%3Cwiley_cross%3ETOPO0948%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true