Structure of the module of vector-valued modular forms

Let V be a representation of the modular group Γ of dimension p. We show that the ℤ-graded space ℋ(V) of holomorphic vector-valued modular forms associated to V is a free module of rank p over the algebra ℳ of classical holomorphic modular forms. We study the nature of ℋ considered as a functor from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2010-08, Vol.82 (1), p.32-48
Hauptverfasser: Marks, Christopher, Mason, Geoffrey
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 32
container_title Journal of the London Mathematical Society
container_volume 82
creator Marks, Christopher
Mason, Geoffrey
description Let V be a representation of the modular group Γ of dimension p. We show that the ℤ-graded space ℋ(V) of holomorphic vector-valued modular forms associated to V is a free module of rank p over the algebra ℳ of classical holomorphic modular forms. We study the nature of ℋ considered as a functor from Γ-modules to graded ℳ-lattices and give some applications, including the calculation of the Hilbert–Poincaré series of ℋ(V) in some cases.
doi_str_mv 10.1112/jlms/jdq020
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_jdq020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS0032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3792-e32c65121d3ee4150d1fb0c2df0c05a58302243a9463e511def7843b4a04fe1b3</originalsourceid><addsrcrecordid>eNp9j01PAjEQQBujiYie_AN7N5WZttvCUYiKBPWAGuOl6fYjgrtZbXdR_r3gGo-eJjN5b5JHyCnCOSKywaqs0mDlPoDBHumhkCOqVA77pAfABJUI6pAcpbQCQI7AekQumtjapo0-q0PWvPqsql1b_mxrb5s60rUpW--6u4lZqGOVjslBMGXyJ7-zTx6vLh8mUzq_v76ZXMyp5WrEqOfMyhwZOu69wBwchgIscwEs5CYfcmBMcDMSkvsc0fmghoIXwoAIHgveJ2fdXxvrlKIP-j0uKxM3GkHvkvUuWXfJWxo7-nNZ-s1_qJ7NbxcAnG0d2jnL1PivP8fENy0VV7mePr9oxp5m8m4s9Zh_AyUHaYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure of the module of vector-valued modular forms</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Marks, Christopher ; Mason, Geoffrey</creator><creatorcontrib>Marks, Christopher ; Mason, Geoffrey</creatorcontrib><description>Let V be a representation of the modular group Γ of dimension p. We show that the ℤ-graded space ℋ(V) of holomorphic vector-valued modular forms associated to V is a free module of rank p over the algebra ℳ of classical holomorphic modular forms. We study the nature of ℋ considered as a functor from Γ-modules to graded ℳ-lattices and give some applications, including the calculation of the Hilbert–Poincaré series of ℋ(V) in some cases.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdq020</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of the London Mathematical Society, 2010-08, Vol.82 (1), p.32-48</ispartof><rights>2010 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3792-e32c65121d3ee4150d1fb0c2df0c05a58302243a9463e511def7843b4a04fe1b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms%2Fjdq020$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms%2Fjdq020$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Marks, Christopher</creatorcontrib><creatorcontrib>Mason, Geoffrey</creatorcontrib><title>Structure of the module of vector-valued modular forms</title><title>Journal of the London Mathematical Society</title><description>Let V be a representation of the modular group Γ of dimension p. We show that the ℤ-graded space ℋ(V) of holomorphic vector-valued modular forms associated to V is a free module of rank p over the algebra ℳ of classical holomorphic modular forms. We study the nature of ℋ considered as a functor from Γ-modules to graded ℳ-lattices and give some applications, including the calculation of the Hilbert–Poincaré series of ℋ(V) in some cases.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9j01PAjEQQBujiYie_AN7N5WZttvCUYiKBPWAGuOl6fYjgrtZbXdR_r3gGo-eJjN5b5JHyCnCOSKywaqs0mDlPoDBHumhkCOqVA77pAfABJUI6pAcpbQCQI7AekQumtjapo0-q0PWvPqsql1b_mxrb5s60rUpW--6u4lZqGOVjslBMGXyJ7-zTx6vLh8mUzq_v76ZXMyp5WrEqOfMyhwZOu69wBwchgIscwEs5CYfcmBMcDMSkvsc0fmghoIXwoAIHgveJ2fdXxvrlKIP-j0uKxM3GkHvkvUuWXfJWxo7-nNZ-s1_qJ7NbxcAnG0d2jnL1PivP8fENy0VV7mePr9oxp5m8m4s9Zh_AyUHaYQ</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Marks, Christopher</creator><creator>Mason, Geoffrey</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201008</creationdate><title>Structure of the module of vector-valued modular forms</title><author>Marks, Christopher ; Mason, Geoffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3792-e32c65121d3ee4150d1fb0c2df0c05a58302243a9463e511def7843b4a04fe1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marks, Christopher</creatorcontrib><creatorcontrib>Mason, Geoffrey</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marks, Christopher</au><au>Mason, Geoffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the module of vector-valued modular forms</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2010-08</date><risdate>2010</risdate><volume>82</volume><issue>1</issue><spage>32</spage><epage>48</epage><pages>32-48</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Let V be a representation of the modular group Γ of dimension p. We show that the ℤ-graded space ℋ(V) of holomorphic vector-valued modular forms associated to V is a free module of rank p over the algebra ℳ of classical holomorphic modular forms. We study the nature of ℋ considered as a functor from Γ-modules to graded ℳ-lattices and give some applications, including the calculation of the Hilbert–Poincaré series of ℋ(V) in some cases.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdq020</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2010-08, Vol.82 (1), p.32-48
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_jdq020
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title Structure of the module of vector-valued modular forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20module%20of%20vector-valued%20modular%20forms&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Marks,%20Christopher&rft.date=2010-08&rft.volume=82&rft.issue=1&rft.spage=32&rft.epage=48&rft.pages=32-48&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdq020&rft_dat=%3Cwiley_cross%3EJLMS0032%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true