Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces

We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2008-04, Vol.77 (2), p.349-362
Hauptverfasser: Colzani, Leonardo, Laeng, Enrico, Morpurgo, Carlo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 2
container_start_page 349
container_title Journal of the London Mathematical Society
container_volume 77
creator Colzani, Leonardo
Laeng, Enrico
Morpurgo, Carlo
description We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the symmetrization, then SMf(x)≤MSf(x) for every x, and equality holds for all x if and only if, up to translations, f(x) = S f(x) almost everywhere. Using these results, we then compute the exact norms of the maximal operator acting on Lorentz and Marcinkiewicz spaces, and we determine extremal functions that realize these norms.
doi_str_mv 10.1112/jlms/jdm111
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_jdm111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1112/jlms/jdm111</oup_id><sourcerecordid>10.1112/jlms/jdm111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3449-a9e30830133735e3ba6a882a7ea506ccd2a844f98bd5fcb108db6ea961a8406f3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWw4ge8YoNC7TjPJeLRQFMBKkiIjTVJHOE2iSvbqE1X_AN_yJeQEsQSVqMZnXM1uggdU3JGKXVH86o2o3lRd8sOGlAviJ0w9MkuGhDiek5ASbiPDoyZE0IZJe4AlbO2roXVcgNWqgZDU-BG6RqrEttXgRPQRfv5_pFKayuxUqrANaxlDRVWS6HBKo07LVVaNHbzrU9B57JZSLGS-QabJeTCHKK9Eiojjn7mED1dXz1eJE56N765OE-dnHle7EAsGIlY9xwLmS9YBgFEkQuhAJ8EeV64EHleGUdZ4Zd5RklUZIGAOKDdnQQlG6LTPjfXyhgtSr7U3bO65ZTwbUV8WxHvK-po2tMrWYn2L5TfptMZYV7cOSe9o96W_4Q7PSiNFetfFPSCByELfZ48v_DL-8mEjR8SPmZfppKKgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Colzani, Leonardo ; Laeng, Enrico ; Morpurgo, Carlo</creator><creatorcontrib>Colzani, Leonardo ; Laeng, Enrico ; Morpurgo, Carlo</creatorcontrib><description>We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the symmetrization, then SMf(x)≤MSf(x) for every x, and equality holds for all x if and only if, up to translations, f(x) = S f(x) almost everywhere. Using these results, we then compute the exact norms of the maximal operator acting on Lorentz and Marcinkiewicz spaces, and we determine extremal functions that realize these norms.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdm111</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of the London Mathematical Society, 2008-04, Vol.77 (2), p.349-362</ispartof><rights>2008 London Mathematical Society 2008</rights><rights>2008 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3449-a9e30830133735e3ba6a882a7ea506ccd2a844f98bd5fcb108db6ea961a8406f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms%2Fjdm111$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms%2Fjdm111$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Colzani, Leonardo</creatorcontrib><creatorcontrib>Laeng, Enrico</creatorcontrib><creatorcontrib>Morpurgo, Carlo</creatorcontrib><title>Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces</title><title>Journal of the London Mathematical Society</title><description>We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the symmetrization, then SMf(x)≤MSf(x) for every x, and equality holds for all x if and only if, up to translations, f(x) = S f(x) almost everywhere. Using these results, we then compute the exact norms of the maximal operator acting on Lorentz and Marcinkiewicz spaces, and we determine extremal functions that realize these norms.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWw4ge8YoNC7TjPJeLRQFMBKkiIjTVJHOE2iSvbqE1X_AN_yJeQEsQSVqMZnXM1uggdU3JGKXVH86o2o3lRd8sOGlAviJ0w9MkuGhDiek5ASbiPDoyZE0IZJe4AlbO2roXVcgNWqgZDU-BG6RqrEttXgRPQRfv5_pFKayuxUqrANaxlDRVWS6HBKo07LVVaNHbzrU9B57JZSLGS-QabJeTCHKK9Eiojjn7mED1dXz1eJE56N765OE-dnHle7EAsGIlY9xwLmS9YBgFEkQuhAJ8EeV64EHleGUdZ4Zd5RklUZIGAOKDdnQQlG6LTPjfXyhgtSr7U3bO65ZTwbUV8WxHvK-po2tMrWYn2L5TfptMZYV7cOSe9o96W_4Q7PSiNFetfFPSCByELfZ48v_DL-8mEjR8SPmZfppKKgQ</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Colzani, Leonardo</creator><creator>Laeng, Enrico</creator><creator>Morpurgo, Carlo</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200804</creationdate><title>Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces</title><author>Colzani, Leonardo ; Laeng, Enrico ; Morpurgo, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3449-a9e30830133735e3ba6a882a7ea506ccd2a844f98bd5fcb108db6ea961a8406f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colzani, Leonardo</creatorcontrib><creatorcontrib>Laeng, Enrico</creatorcontrib><creatorcontrib>Morpurgo, Carlo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colzani, Leonardo</au><au>Laeng, Enrico</au><au>Morpurgo, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2008-04</date><risdate>2008</risdate><volume>77</volume><issue>2</issue><spage>349</spage><epage>362</epage><pages>349-362</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the symmetrization, then SMf(x)≤MSf(x) for every x, and equality holds for all x if and only if, up to translations, f(x) = S f(x) almost everywhere. Using these results, we then compute the exact norms of the maximal operator acting on Lorentz and Marcinkiewicz spaces, and we determine extremal functions that realize these norms.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdm111</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2008-04, Vol.77 (2), p.349-362
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_jdm111
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetrization%20and%20norm%20of%20the%20Hardy%E2%80%93Littlewood%20maximal%20operator%20on%20Lorentz%20and%20Marcinkiewicz%20spaces&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Colzani,%20Leonardo&rft.date=2008-04&rft.volume=77&rft.issue=2&rft.spage=349&rft.epage=362&rft.pages=349-362&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdm111&rft_dat=%3Coup_cross%3E10.1112/jlms/jdm111%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1112/jlms/jdm111&rfr_iscdi=true