Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces
We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2008-04, Vol.77 (2), p.349-362 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 2 |
container_start_page | 349 |
container_title | Journal of the London Mathematical Society |
container_volume | 77 |
creator | Colzani, Leonardo Laeng, Enrico Morpurgo, Carlo |
description | We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the symmetrization, then SMf(x)≤MSf(x) for every x, and equality holds for all x if and only if, up to translations, f(x) = S f(x) almost everywhere. Using these results, we then compute the exact norms of the maximal operator acting on Lorentz and Marcinkiewicz spaces, and we determine extremal functions that realize these norms. |
doi_str_mv | 10.1112/jlms/jdm111 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_jdm111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1112/jlms/jdm111</oup_id><sourcerecordid>10.1112/jlms/jdm111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3449-a9e30830133735e3ba6a882a7ea506ccd2a844f98bd5fcb108db6ea961a8406f3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWw4ge8YoNC7TjPJeLRQFMBKkiIjTVJHOE2iSvbqE1X_AN_yJeQEsQSVqMZnXM1uggdU3JGKXVH86o2o3lRd8sOGlAviJ0w9MkuGhDiek5ASbiPDoyZE0IZJe4AlbO2roXVcgNWqgZDU-BG6RqrEttXgRPQRfv5_pFKayuxUqrANaxlDRVWS6HBKo07LVVaNHbzrU9B57JZSLGS-QabJeTCHKK9Eiojjn7mED1dXz1eJE56N765OE-dnHle7EAsGIlY9xwLmS9YBgFEkQuhAJ8EeV64EHleGUdZ4Zd5RklUZIGAOKDdnQQlG6LTPjfXyhgtSr7U3bO65ZTwbUV8WxHvK-po2tMrWYn2L5TfptMZYV7cOSe9o96W_4Q7PSiNFetfFPSCByELfZ48v_DL-8mEjR8SPmZfppKKgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Colzani, Leonardo ; Laeng, Enrico ; Morpurgo, Carlo</creator><creatorcontrib>Colzani, Leonardo ; Laeng, Enrico ; Morpurgo, Carlo</creatorcontrib><description>We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the symmetrization, then SMf(x)≤MSf(x) for every x, and equality holds for all x if and only if, up to translations, f(x) = S f(x) almost everywhere. Using these results, we then compute the exact norms of the maximal operator acting on Lorentz and Marcinkiewicz spaces, and we determine extremal functions that realize these norms.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdm111</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of the London Mathematical Society, 2008-04, Vol.77 (2), p.349-362</ispartof><rights>2008 London Mathematical Society 2008</rights><rights>2008 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3449-a9e30830133735e3ba6a882a7ea506ccd2a844f98bd5fcb108db6ea961a8406f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms%2Fjdm111$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms%2Fjdm111$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Colzani, Leonardo</creatorcontrib><creatorcontrib>Laeng, Enrico</creatorcontrib><creatorcontrib>Morpurgo, Carlo</creatorcontrib><title>Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces</title><title>Journal of the London Mathematical Society</title><description>We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the symmetrization, then SMf(x)≤MSf(x) for every x, and equality holds for all x if and only if, up to translations, f(x) = S f(x) almost everywhere. Using these results, we then compute the exact norms of the maximal operator acting on Lorentz and Marcinkiewicz spaces, and we determine extremal functions that realize these norms.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWw4ge8YoNC7TjPJeLRQFMBKkiIjTVJHOE2iSvbqE1X_AN_yJeQEsQSVqMZnXM1uggdU3JGKXVH86o2o3lRd8sOGlAviJ0w9MkuGhDiek5ASbiPDoyZE0IZJe4AlbO2roXVcgNWqgZDU-BG6RqrEttXgRPQRfv5_pFKayuxUqrANaxlDRVWS6HBKo07LVVaNHbzrU9B57JZSLGS-QabJeTCHKK9Eiojjn7mED1dXz1eJE56N765OE-dnHle7EAsGIlY9xwLmS9YBgFEkQuhAJ8EeV64EHleGUdZ4Zd5RklUZIGAOKDdnQQlG6LTPjfXyhgtSr7U3bO65ZTwbUV8WxHvK-po2tMrWYn2L5TfptMZYV7cOSe9o96W_4Q7PSiNFetfFPSCByELfZ48v_DL-8mEjR8SPmZfppKKgQ</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Colzani, Leonardo</creator><creator>Laeng, Enrico</creator><creator>Morpurgo, Carlo</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200804</creationdate><title>Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces</title><author>Colzani, Leonardo ; Laeng, Enrico ; Morpurgo, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3449-a9e30830133735e3ba6a882a7ea506ccd2a844f98bd5fcb108db6ea961a8406f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colzani, Leonardo</creatorcontrib><creatorcontrib>Laeng, Enrico</creatorcontrib><creatorcontrib>Morpurgo, Carlo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colzani, Leonardo</au><au>Laeng, Enrico</au><au>Morpurgo, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2008-04</date><risdate>2008</risdate><volume>77</volume><issue>2</issue><spage>349</spage><epage>362</epage><pages>349-362</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We prove that when a function on the real line is symmetrically rearranged, the distribution function of its uncentered Hardy–Littlewood maximal function increases pointwise, while it remains unchanged only when the function is already symmetric. Equivalently, if M is the maximal operator and S the symmetrization, then SMf(x)≤MSf(x) for every x, and equality holds for all x if and only if, up to translations, f(x) = S f(x) almost everywhere. Using these results, we then compute the exact norms of the maximal operator acting on Lorentz and Marcinkiewicz spaces, and we determine extremal functions that realize these norms.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdm111</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2008-04, Vol.77 (2), p.349-362 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_jlms_jdm111 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
title | Symmetrization and norm of the Hardy–Littlewood maximal operator on Lorentz and Marcinkiewicz spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetrization%20and%20norm%20of%20the%20Hardy%E2%80%93Littlewood%20maximal%20operator%20on%20Lorentz%20and%20Marcinkiewicz%20spaces&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Colzani,%20Leonardo&rft.date=2008-04&rft.volume=77&rft.issue=2&rft.spage=349&rft.epage=362&rft.pages=349-362&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdm111&rft_dat=%3Coup_cross%3E10.1112/jlms/jdm111%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1112/jlms/jdm111&rfr_iscdi=true |