Charmed roots and the Kroweras complement
Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group:...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2024-11, Vol.110 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of the London Mathematical Society |
container_volume | 110 |
creator | Dequêne, Benjamin Frieden, Gabriel Iraci, Alessandro Schreier‐Aigner, Florian Thomas, Hugh Williams, Nathan |
description | Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (1,2,…,n)$(1,2,\ldots ,n)$, we recover one of the standard bijections between noncrossing and nonnesting partitions. |
doi_str_mv | 10.1112/jlms.70025 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_70025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS70025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1625-4f977be6e0abd74c2c469d59dd045d63faffc4167a6cfee010931fdb69a87e723</originalsourceid><addsrcrecordid>eNp9j0FLw0AQhRdRMFYv_oJcFdLObDa75ihBqzbiQT0vm91Z2pI0ZTdQ-u9NjWdPA4_vPeZj7BZhjoh8sW27OFcAvDhjCQpZZkoVcM6SMRKZRFCX7CrGLQDmCDxhd9XahI5cGvp-iKnZuXRYU7oK_YGCiantu31LHe2Ga3bhTRvp5u_O2Pfz01f1ktUfy9fqsc4sSl5kwpdKNSQJTOOUsNyOX7iidA5E4WTujfdWoFRGWk8ECGWO3jWyNA-KFM9n7H7ataGPMZDX-7DpTDhqBH2S1CdJ_Ss5wjjBh01Lx39I_Va_f06dH18TVG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Charmed roots and the Kroweras complement</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dequêne, Benjamin ; Frieden, Gabriel ; Iraci, Alessandro ; Schreier‐Aigner, Florian ; Thomas, Hugh ; Williams, Nathan</creator><creatorcontrib>Dequêne, Benjamin ; Frieden, Gabriel ; Iraci, Alessandro ; Schreier‐Aigner, Florian ; Thomas, Hugh ; Williams, Nathan</creatorcontrib><description>Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (1,2,…,n)$(1,2,\ldots ,n)$, we recover one of the standard bijections between noncrossing and nonnesting partitions.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.70025</identifier><language>eng</language><ispartof>Journal of the London Mathematical Society, 2024-11, Vol.110 (5), p.n/a</ispartof><rights>2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1625-4f977be6e0abd74c2c469d59dd045d63faffc4167a6cfee010931fdb69a87e723</cites><orcidid>0000-0002-3158-3929 ; 0000-0003-2084-6428 ; 0000-0002-8093-0974 ; 0000-0003-1177-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.70025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.70025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Dequêne, Benjamin</creatorcontrib><creatorcontrib>Frieden, Gabriel</creatorcontrib><creatorcontrib>Iraci, Alessandro</creatorcontrib><creatorcontrib>Schreier‐Aigner, Florian</creatorcontrib><creatorcontrib>Thomas, Hugh</creatorcontrib><creatorcontrib>Williams, Nathan</creatorcontrib><title>Charmed roots and the Kroweras complement</title><title>Journal of the London Mathematical Society</title><description>Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (1,2,…,n)$(1,2,\ldots ,n)$, we recover one of the standard bijections between noncrossing and nonnesting partitions.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLw0AQhRdRMFYv_oJcFdLObDa75ihBqzbiQT0vm91Z2pI0ZTdQ-u9NjWdPA4_vPeZj7BZhjoh8sW27OFcAvDhjCQpZZkoVcM6SMRKZRFCX7CrGLQDmCDxhd9XahI5cGvp-iKnZuXRYU7oK_YGCiantu31LHe2Ga3bhTRvp5u_O2Pfz01f1ktUfy9fqsc4sSl5kwpdKNSQJTOOUsNyOX7iidA5E4WTujfdWoFRGWk8ECGWO3jWyNA-KFM9n7H7ataGPMZDX-7DpTDhqBH2S1CdJ_Ss5wjjBh01Lx39I_Va_f06dH18TVG4</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Dequêne, Benjamin</creator><creator>Frieden, Gabriel</creator><creator>Iraci, Alessandro</creator><creator>Schreier‐Aigner, Florian</creator><creator>Thomas, Hugh</creator><creator>Williams, Nathan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3158-3929</orcidid><orcidid>https://orcid.org/0000-0003-2084-6428</orcidid><orcidid>https://orcid.org/0000-0002-8093-0974</orcidid><orcidid>https://orcid.org/0000-0003-1177-9972</orcidid></search><sort><creationdate>202411</creationdate><title>Charmed roots and the Kroweras complement</title><author>Dequêne, Benjamin ; Frieden, Gabriel ; Iraci, Alessandro ; Schreier‐Aigner, Florian ; Thomas, Hugh ; Williams, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1625-4f977be6e0abd74c2c469d59dd045d63faffc4167a6cfee010931fdb69a87e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dequêne, Benjamin</creatorcontrib><creatorcontrib>Frieden, Gabriel</creatorcontrib><creatorcontrib>Iraci, Alessandro</creatorcontrib><creatorcontrib>Schreier‐Aigner, Florian</creatorcontrib><creatorcontrib>Thomas, Hugh</creatorcontrib><creatorcontrib>Williams, Nathan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dequêne, Benjamin</au><au>Frieden, Gabriel</au><au>Iraci, Alessandro</au><au>Schreier‐Aigner, Florian</au><au>Thomas, Hugh</au><au>Williams, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charmed roots and the Kroweras complement</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2024-11</date><risdate>2024</risdate><volume>110</volume><issue>5</issue><epage>n/a</epage><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (1,2,…,n)$(1,2,\ldots ,n)$, we recover one of the standard bijections between noncrossing and nonnesting partitions.</abstract><doi>10.1112/jlms.70025</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-3158-3929</orcidid><orcidid>https://orcid.org/0000-0003-2084-6428</orcidid><orcidid>https://orcid.org/0000-0002-8093-0974</orcidid><orcidid>https://orcid.org/0000-0003-1177-9972</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2024-11, Vol.110 (5), p.n/a |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_jlms_70025 |
source | Wiley Online Library Journals Frontfile Complete |
title | Charmed roots and the Kroweras complement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charmed%20roots%20and%20the%20Kroweras%20complement&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Dequ%C3%AAne,%20Benjamin&rft.date=2024-11&rft.volume=110&rft.issue=5&rft.epage=n/a&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.70025&rft_dat=%3Cwiley_cross%3EJLMS70025%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |