Charmed roots and the Kroweras complement

Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2024-11, Vol.110 (5), p.n/a
Hauptverfasser: Dequêne, Benjamin, Frieden, Gabriel, Iraci, Alessandro, Schreier‐Aigner, Florian, Thomas, Hugh, Williams, Nathan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Journal of the London Mathematical Society
container_volume 110
creator Dequêne, Benjamin
Frieden, Gabriel
Iraci, Alessandro
Schreier‐Aigner, Florian
Thomas, Hugh
Williams, Nathan
description Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (1,2,…,n)$(1,2,\ldots ,n)$, we recover one of the standard bijections between noncrossing and nonnesting partitions.
doi_str_mv 10.1112/jlms.70025
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_70025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS70025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1625-4f977be6e0abd74c2c469d59dd045d63faffc4167a6cfee010931fdb69a87e723</originalsourceid><addsrcrecordid>eNp9j0FLw0AQhRdRMFYv_oJcFdLObDa75ihBqzbiQT0vm91Z2pI0ZTdQ-u9NjWdPA4_vPeZj7BZhjoh8sW27OFcAvDhjCQpZZkoVcM6SMRKZRFCX7CrGLQDmCDxhd9XahI5cGvp-iKnZuXRYU7oK_YGCiantu31LHe2Ga3bhTRvp5u_O2Pfz01f1ktUfy9fqsc4sSl5kwpdKNSQJTOOUsNyOX7iidA5E4WTujfdWoFRGWk8ECGWO3jWyNA-KFM9n7H7ataGPMZDX-7DpTDhqBH2S1CdJ_Ss5wjjBh01Lx39I_Va_f06dH18TVG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Charmed roots and the Kroweras complement</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dequêne, Benjamin ; Frieden, Gabriel ; Iraci, Alessandro ; Schreier‐Aigner, Florian ; Thomas, Hugh ; Williams, Nathan</creator><creatorcontrib>Dequêne, Benjamin ; Frieden, Gabriel ; Iraci, Alessandro ; Schreier‐Aigner, Florian ; Thomas, Hugh ; Williams, Nathan</creatorcontrib><description>Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (1,2,…,n)$(1,2,\ldots ,n)$, we recover one of the standard bijections between noncrossing and nonnesting partitions.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.70025</identifier><language>eng</language><ispartof>Journal of the London Mathematical Society, 2024-11, Vol.110 (5), p.n/a</ispartof><rights>2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1625-4f977be6e0abd74c2c469d59dd045d63faffc4167a6cfee010931fdb69a87e723</cites><orcidid>0000-0002-3158-3929 ; 0000-0003-2084-6428 ; 0000-0002-8093-0974 ; 0000-0003-1177-9972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.70025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.70025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Dequêne, Benjamin</creatorcontrib><creatorcontrib>Frieden, Gabriel</creatorcontrib><creatorcontrib>Iraci, Alessandro</creatorcontrib><creatorcontrib>Schreier‐Aigner, Florian</creatorcontrib><creatorcontrib>Thomas, Hugh</creatorcontrib><creatorcontrib>Williams, Nathan</creatorcontrib><title>Charmed roots and the Kroweras complement</title><title>Journal of the London Mathematical Society</title><description>Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (1,2,…,n)$(1,2,\ldots ,n)$, we recover one of the standard bijections between noncrossing and nonnesting partitions.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLw0AQhRdRMFYv_oJcFdLObDa75ihBqzbiQT0vm91Z2pI0ZTdQ-u9NjWdPA4_vPeZj7BZhjoh8sW27OFcAvDhjCQpZZkoVcM6SMRKZRFCX7CrGLQDmCDxhd9XahI5cGvp-iKnZuXRYU7oK_YGCiantu31LHe2Ga3bhTRvp5u_O2Pfz01f1ktUfy9fqsc4sSl5kwpdKNSQJTOOUsNyOX7iidA5E4WTujfdWoFRGWk8ECGWO3jWyNA-KFM9n7H7ataGPMZDX-7DpTDhqBH2S1CdJ_Ss5wjjBh01Lx39I_Va_f06dH18TVG4</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Dequêne, Benjamin</creator><creator>Frieden, Gabriel</creator><creator>Iraci, Alessandro</creator><creator>Schreier‐Aigner, Florian</creator><creator>Thomas, Hugh</creator><creator>Williams, Nathan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3158-3929</orcidid><orcidid>https://orcid.org/0000-0003-2084-6428</orcidid><orcidid>https://orcid.org/0000-0002-8093-0974</orcidid><orcidid>https://orcid.org/0000-0003-1177-9972</orcidid></search><sort><creationdate>202411</creationdate><title>Charmed roots and the Kroweras complement</title><author>Dequêne, Benjamin ; Frieden, Gabriel ; Iraci, Alessandro ; Schreier‐Aigner, Florian ; Thomas, Hugh ; Williams, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1625-4f977be6e0abd74c2c469d59dd045d63faffc4167a6cfee010931fdb69a87e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dequêne, Benjamin</creatorcontrib><creatorcontrib>Frieden, Gabriel</creatorcontrib><creatorcontrib>Iraci, Alessandro</creatorcontrib><creatorcontrib>Schreier‐Aigner, Florian</creatorcontrib><creatorcontrib>Thomas, Hugh</creatorcontrib><creatorcontrib>Williams, Nathan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dequêne, Benjamin</au><au>Frieden, Gabriel</au><au>Iraci, Alessandro</au><au>Schreier‐Aigner, Florian</au><au>Thomas, Hugh</au><au>Williams, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charmed roots and the Kroweras complement</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2024-11</date><risdate>2024</risdate><volume>110</volume><issue>5</issue><epage>n/a</epage><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Although both noncrossing partitions and nonnesting partitions are uniformly enumerated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter‐theoretically natural cyclic action we call the Kroweras complement. Our equivariant bijection is the unique bijection that is both equivariant and support‐preserving, and is built using local rules depending on a new definition of charmed roots. Charmed roots are determined by the choice of Coxeter element — in the special case of the linear Coxeter element (1,2,…,n)$(1,2,\ldots ,n)$, we recover one of the standard bijections between noncrossing and nonnesting partitions.</abstract><doi>10.1112/jlms.70025</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-3158-3929</orcidid><orcidid>https://orcid.org/0000-0003-2084-6428</orcidid><orcidid>https://orcid.org/0000-0002-8093-0974</orcidid><orcidid>https://orcid.org/0000-0003-1177-9972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2024-11, Vol.110 (5), p.n/a
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_70025
source Wiley Online Library Journals Frontfile Complete
title Charmed roots and the Kroweras complement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charmed%20roots%20and%20the%20Kroweras%20complement&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Dequ%C3%AAne,%20Benjamin&rft.date=2024-11&rft.volume=110&rft.issue=5&rft.epage=n/a&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.70025&rft_dat=%3Cwiley_cross%3EJLMS70025%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true