Blowup algebras of determinantal ideals in prime characteristic

We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2024-08, Vol.110 (2), p.n/a
Hauptverfasser: De Stefani, Alessandro, Montaño, Jonathan, Núñez‐Betancourt, Luis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Journal of the London Mathematical Society
container_volume 110
creator De Stefani, Alessandro
Montaño, Jonathan
Núñez‐Betancourt, Luis
description We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F$F$‐split filtrations and symbolic F$F$‐split ideals.
doi_str_mv 10.1112/jlms.12969
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1989-a3cf8ba4902bb829a61b5ab63777f6d0a6dae9d9fee184deaef6fb94ce0b4ea73</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqWw4Qu8RkrxJKkdrxBUlIeCWADraOyMwVUelR1U9e9JCWtWs7hn5s5h7BLEAgDS603TxgWkWuojNoNc6kSppThmMyHSPJEg1Ck7i3EjBGQg0hm7uWv63feWY_NJJmDkveM1DRRa32E3YMN9TdhE7ju-Db4lbr8woB0JHwdvz9mJG2O6-Jtz9rG-f189JuXrw9Pqtkws6EInmFlXGMy1SI0pUo0SzBKNzJRSTtYCZY2ka-2IoMjHRnLSGZ1bEiYnVNmcXU13behjDOSqwzcY9hWI6qBeHdSrX_URhgne-Yb2_5DVc_nyNu38AE_6Xi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blowup algebras of determinantal ideals in prime characteristic</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Stefani, Alessandro ; Montaño, Jonathan ; Núñez‐Betancourt, Luis</creator><creatorcontrib>De Stefani, Alessandro ; Montaño, Jonathan ; Núñez‐Betancourt, Luis</creatorcontrib><description>We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F$F$‐split filtrations and symbolic F$F$‐split ideals.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12969</identifier><language>eng</language><ispartof>Journal of the London Mathematical Society, 2024-08, Vol.110 (2), p.n/a</ispartof><rights>2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1989-a3cf8ba4902bb829a61b5ab63777f6d0a6dae9d9fee184deaef6fb94ce0b4ea73</cites><orcidid>0000-0003-3094-956X ; 0000-0002-5266-1615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12969$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12969$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>De Stefani, Alessandro</creatorcontrib><creatorcontrib>Montaño, Jonathan</creatorcontrib><creatorcontrib>Núñez‐Betancourt, Luis</creatorcontrib><title>Blowup algebras of determinantal ideals in prime characteristic</title><title>Journal of the London Mathematical Society</title><description>We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F$F$‐split filtrations and symbolic F$F$‐split ideals.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqWw4Qu8RkrxJKkdrxBUlIeCWADraOyMwVUelR1U9e9JCWtWs7hn5s5h7BLEAgDS603TxgWkWuojNoNc6kSppThmMyHSPJEg1Ck7i3EjBGQg0hm7uWv63feWY_NJJmDkveM1DRRa32E3YMN9TdhE7ju-Db4lbr8woB0JHwdvz9mJG2O6-Jtz9rG-f189JuXrw9Pqtkws6EInmFlXGMy1SI0pUo0SzBKNzJRSTtYCZY2ka-2IoMjHRnLSGZ1bEiYnVNmcXU13behjDOSqwzcY9hWI6qBeHdSrX_URhgne-Yb2_5DVc_nyNu38AE_6Xi4</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>De Stefani, Alessandro</creator><creator>Montaño, Jonathan</creator><creator>Núñez‐Betancourt, Luis</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3094-956X</orcidid><orcidid>https://orcid.org/0000-0002-5266-1615</orcidid></search><sort><creationdate>202408</creationdate><title>Blowup algebras of determinantal ideals in prime characteristic</title><author>De Stefani, Alessandro ; Montaño, Jonathan ; Núñez‐Betancourt, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1989-a3cf8ba4902bb829a61b5ab63777f6d0a6dae9d9fee184deaef6fb94ce0b4ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Stefani, Alessandro</creatorcontrib><creatorcontrib>Montaño, Jonathan</creatorcontrib><creatorcontrib>Núñez‐Betancourt, Luis</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Stefani, Alessandro</au><au>Montaño, Jonathan</au><au>Núñez‐Betancourt, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blowup algebras of determinantal ideals in prime characteristic</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2024-08</date><risdate>2024</risdate><volume>110</volume><issue>2</issue><epage>n/a</epage><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F$F$‐split filtrations and symbolic F$F$‐split ideals.</abstract><doi>10.1112/jlms.12969</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0003-3094-956X</orcidid><orcidid>https://orcid.org/0000-0002-5266-1615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2024-08, Vol.110 (2), p.n/a
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_12969
source Wiley Online Library Journals Frontfile Complete
title Blowup algebras of determinantal ideals in prime characteristic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blowup%20algebras%20of%20determinantal%20ideals%20in%20prime%20characteristic&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=De%20Stefani,%20Alessandro&rft.date=2024-08&rft.volume=110&rft.issue=2&rft.epage=n/a&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12969&rft_dat=%3Cwiley_cross%3EJLMS12969%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true