Blowup algebras of determinantal ideals in prime characteristic
We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these resu...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2024-08, Vol.110 (2), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of the London Mathematical Society |
container_volume | 110 |
creator | De Stefani, Alessandro Montaño, Jonathan Núñez‐Betancourt, Luis |
description | We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F$F$‐split filtrations and symbolic F$F$‐split ideals. |
doi_str_mv | 10.1112/jlms.12969 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1989-a3cf8ba4902bb829a61b5ab63777f6d0a6dae9d9fee184deaef6fb94ce0b4ea73</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqWw4Qu8RkrxJKkdrxBUlIeCWADraOyMwVUelR1U9e9JCWtWs7hn5s5h7BLEAgDS603TxgWkWuojNoNc6kSppThmMyHSPJEg1Ck7i3EjBGQg0hm7uWv63feWY_NJJmDkveM1DRRa32E3YMN9TdhE7ju-Db4lbr8woB0JHwdvz9mJG2O6-Jtz9rG-f189JuXrw9Pqtkws6EInmFlXGMy1SI0pUo0SzBKNzJRSTtYCZY2ka-2IoMjHRnLSGZ1bEiYnVNmcXU13behjDOSqwzcY9hWI6qBeHdSrX_URhgne-Yb2_5DVc_nyNu38AE_6Xi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blowup algebras of determinantal ideals in prime characteristic</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Stefani, Alessandro ; Montaño, Jonathan ; Núñez‐Betancourt, Luis</creator><creatorcontrib>De Stefani, Alessandro ; Montaño, Jonathan ; Núñez‐Betancourt, Luis</creatorcontrib><description>We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F$F$‐split filtrations and symbolic F$F$‐split ideals.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12969</identifier><language>eng</language><ispartof>Journal of the London Mathematical Society, 2024-08, Vol.110 (2), p.n/a</ispartof><rights>2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1989-a3cf8ba4902bb829a61b5ab63777f6d0a6dae9d9fee184deaef6fb94ce0b4ea73</cites><orcidid>0000-0003-3094-956X ; 0000-0002-5266-1615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12969$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12969$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>De Stefani, Alessandro</creatorcontrib><creatorcontrib>Montaño, Jonathan</creatorcontrib><creatorcontrib>Núñez‐Betancourt, Luis</creatorcontrib><title>Blowup algebras of determinantal ideals in prime characteristic</title><title>Journal of the London Mathematical Society</title><description>We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F$F$‐split filtrations and symbolic F$F$‐split ideals.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqWw4Qu8RkrxJKkdrxBUlIeCWADraOyMwVUelR1U9e9JCWtWs7hn5s5h7BLEAgDS603TxgWkWuojNoNc6kSppThmMyHSPJEg1Ck7i3EjBGQg0hm7uWv63feWY_NJJmDkveM1DRRa32E3YMN9TdhE7ju-Db4lbr8woB0JHwdvz9mJG2O6-Jtz9rG-f189JuXrw9Pqtkws6EInmFlXGMy1SI0pUo0SzBKNzJRSTtYCZY2ka-2IoMjHRnLSGZ1bEiYnVNmcXU13behjDOSqwzcY9hWI6qBeHdSrX_URhgne-Yb2_5DVc_nyNu38AE_6Xi4</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>De Stefani, Alessandro</creator><creator>Montaño, Jonathan</creator><creator>Núñez‐Betancourt, Luis</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3094-956X</orcidid><orcidid>https://orcid.org/0000-0002-5266-1615</orcidid></search><sort><creationdate>202408</creationdate><title>Blowup algebras of determinantal ideals in prime characteristic</title><author>De Stefani, Alessandro ; Montaño, Jonathan ; Núñez‐Betancourt, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1989-a3cf8ba4902bb829a61b5ab63777f6d0a6dae9d9fee184deaef6fb94ce0b4ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Stefani, Alessandro</creatorcontrib><creatorcontrib>Montaño, Jonathan</creatorcontrib><creatorcontrib>Núñez‐Betancourt, Luis</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Stefani, Alessandro</au><au>Montaño, Jonathan</au><au>Núñez‐Betancourt, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blowup algebras of determinantal ideals in prime characteristic</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2024-08</date><risdate>2024</risdate><volume>110</volume><issue>2</issue><epage>n/a</epage><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We study when blowup algebras are F$F$‐split or strongly F$F$‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F$F$‐split filtrations and symbolic F$F$‐split ideals.</abstract><doi>10.1112/jlms.12969</doi><tpages>50</tpages><orcidid>https://orcid.org/0000-0003-3094-956X</orcidid><orcidid>https://orcid.org/0000-0002-5266-1615</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2024-08, Vol.110 (2), p.n/a |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_jlms_12969 |
source | Wiley Online Library Journals Frontfile Complete |
title | Blowup algebras of determinantal ideals in prime characteristic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blowup%20algebras%20of%20determinantal%20ideals%20in%20prime%20characteristic&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=De%20Stefani,%20Alessandro&rft.date=2024-08&rft.volume=110&rft.issue=2&rft.epage=n/a&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12969&rft_dat=%3Cwiley_cross%3EJLMS12969%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |