Extinction behavior for the fast diffusion equations with critical exponent and Dirichlet boundary conditions
For a smooth bounded domain Ω⊆Rn$\Omega \subseteq \mathbb {R}^n$, n⩾3$n\geqslant 3$, we consider the fast diffusion equation with critical sobolev exponent ∂w∂τ=Δwn−2n+2\begin{equation*} \hspace*{7pc}\frac{\partial w}{\partial \tau } =\Delta w^{\frac{n-2}{n+2}}\hspace*{-7pc} \end{equation*}under Dir...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2022-09, Vol.106 (2), p.855-898 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 2 |
container_start_page | 855 |
container_title | Journal of the London Mathematical Society |
container_volume | 106 |
creator | Sire, Yannick Wei, Juncheng Zheng, Youquan |
description | For a smooth bounded domain Ω⊆Rn$\Omega \subseteq \mathbb {R}^n$, n⩾3$n\geqslant 3$, we consider the fast diffusion equation with critical sobolev exponent
∂w∂τ=Δwn−2n+2\begin{equation*} \hspace*{7pc}\frac{\partial w}{\partial \tau } =\Delta w^{\frac{n-2}{n+2}}\hspace*{-7pc} \end{equation*}under Dirichlet boundary condition w(·,τ)=0$w(\cdot , \tau ) = 0$ on ∂Ω$\partial \Omega$. Using the parabolic gluing method, we prove existence of an initial data w0$w_0$ such that the corresponding solution has extinction rate of the form
∥w(·,τ)∥L∞(Ω)=γ0(T−τ)n+24ln(T−τ)n+22(n−2)(1+o(1))\begin{equation*} \hspace*{13pc}\Vert w(\cdot , \tau )\Vert _{L^\infty (\Omega )} = \gamma _0(T-\tau )^{\frac{n+2}{4}}{\left|\ln (T-\tau )\right|}^{\frac{n+2}{2(n-2)}}(1+o(1)) \end{equation*}as t→T−$t\rightarrow T^-$, here T>0$T > 0$ is the finite extinction time of w(x,τ)$w(x, \tau )$. This generalizes a result of Galaktionov and King [30] for the radially symmetric case Ω=B1(0):={x∈Rn||x| |
doi_str_mv | 10.1112/jlms.12587 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2037-9aa685bc2851b83f35591943046583d5ff9375622741e9b609d55581b92383ce3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqWw4QReI6V47DiOl6iUPxWxANaR49iKq9QptgvtbTgLJ6NpWbMYfYt532j0ELoEMgEAer3olnEClJfiCI0gL2QmBCfHaEQIzbMCiDhFZzEuCAEGhI6Qn22S8zq53uPatOrT9QHb3aTWYKtiwo2zdh2HvflYqwGMP99fLrVYB5ecVh02m1XvjU9Y-QbfuuB025mE637tGxW2WPe-cfvmOTqxqovm4i_H6P1u9jZ9yOYv94_Tm3mmKWEik0oVJa81LTnUJbOMcwkyZyQveMkabq1kgheUihyMrAsiG855CbWkrGTasDG6OtzVoY8xGFutglvufqmAVIOpajBV7U3tYDjAX64z23_I6mn-_Hro_AIyZm4B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extinction behavior for the fast diffusion equations with critical exponent and Dirichlet boundary conditions</title><source>Wiley Online Library Core Title</source><creator>Sire, Yannick ; Wei, Juncheng ; Zheng, Youquan</creator><creatorcontrib>Sire, Yannick ; Wei, Juncheng ; Zheng, Youquan</creatorcontrib><description>For a smooth bounded domain Ω⊆Rn$\Omega \subseteq \mathbb {R}^n$, n⩾3$n\geqslant 3$, we consider the fast diffusion equation with critical sobolev exponent
∂w∂τ=Δwn−2n+2\begin{equation*} \hspace*{7pc}\frac{\partial w}{\partial \tau } =\Delta w^{\frac{n-2}{n+2}}\hspace*{-7pc} \end{equation*}under Dirichlet boundary condition w(·,τ)=0$w(\cdot , \tau ) = 0$ on ∂Ω$\partial \Omega$. Using the parabolic gluing method, we prove existence of an initial data w0$w_0$ such that the corresponding solution has extinction rate of the form
∥w(·,τ)∥L∞(Ω)=γ0(T−τ)n+24ln(T−τ)n+22(n−2)(1+o(1))\begin{equation*} \hspace*{13pc}\Vert w(\cdot , \tau )\Vert _{L^\infty (\Omega )} = \gamma _0(T-\tau )^{\frac{n+2}{4}}{\left|\ln (T-\tau )\right|}^{\frac{n+2}{2(n-2)}}(1+o(1)) \end{equation*}as t→T−$t\rightarrow T^-$, here T>0$T > 0$ is the finite extinction time of w(x,τ)$w(x, \tau )$. This generalizes a result of Galaktionov and King [30] for the radially symmetric case Ω=B1(0):={x∈Rn||x|<1}⊂Rn$\Omega =B_1(0) : = \lbrace x\in \mathbb {R}^n||x| < 1\rbrace \subset \mathbb {R}^n$.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12587</identifier><language>eng</language><ispartof>Journal of the London Mathematical Society, 2022-09, Vol.106 (2), p.855-898</ispartof><rights>2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2037-9aa685bc2851b83f35591943046583d5ff9375622741e9b609d55581b92383ce3</citedby><cites>FETCH-LOGICAL-c2037-9aa685bc2851b83f35591943046583d5ff9375622741e9b609d55581b92383ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12587$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12587$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sire, Yannick</creatorcontrib><creatorcontrib>Wei, Juncheng</creatorcontrib><creatorcontrib>Zheng, Youquan</creatorcontrib><title>Extinction behavior for the fast diffusion equations with critical exponent and Dirichlet boundary conditions</title><title>Journal of the London Mathematical Society</title><description>For a smooth bounded domain Ω⊆Rn$\Omega \subseteq \mathbb {R}^n$, n⩾3$n\geqslant 3$, we consider the fast diffusion equation with critical sobolev exponent
∂w∂τ=Δwn−2n+2\begin{equation*} \hspace*{7pc}\frac{\partial w}{\partial \tau } =\Delta w^{\frac{n-2}{n+2}}\hspace*{-7pc} \end{equation*}under Dirichlet boundary condition w(·,τ)=0$w(\cdot , \tau ) = 0$ on ∂Ω$\partial \Omega$. Using the parabolic gluing method, we prove existence of an initial data w0$w_0$ such that the corresponding solution has extinction rate of the form
∥w(·,τ)∥L∞(Ω)=γ0(T−τ)n+24ln(T−τ)n+22(n−2)(1+o(1))\begin{equation*} \hspace*{13pc}\Vert w(\cdot , \tau )\Vert _{L^\infty (\Omega )} = \gamma _0(T-\tau )^{\frac{n+2}{4}}{\left|\ln (T-\tau )\right|}^{\frac{n+2}{2(n-2)}}(1+o(1)) \end{equation*}as t→T−$t\rightarrow T^-$, here T>0$T > 0$ is the finite extinction time of w(x,τ)$w(x, \tau )$. This generalizes a result of Galaktionov and King [30] for the radially symmetric case Ω=B1(0):={x∈Rn||x|<1}⊂Rn$\Omega =B_1(0) : = \lbrace x\in \mathbb {R}^n||x| < 1\rbrace \subset \mathbb {R}^n$.</description><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqWw4QReI6V47DiOl6iUPxWxANaR49iKq9QptgvtbTgLJ6NpWbMYfYt532j0ELoEMgEAer3olnEClJfiCI0gL2QmBCfHaEQIzbMCiDhFZzEuCAEGhI6Qn22S8zq53uPatOrT9QHb3aTWYKtiwo2zdh2HvflYqwGMP99fLrVYB5ecVh02m1XvjU9Y-QbfuuB025mE637tGxW2WPe-cfvmOTqxqovm4i_H6P1u9jZ9yOYv94_Tm3mmKWEik0oVJa81LTnUJbOMcwkyZyQveMkabq1kgheUihyMrAsiG855CbWkrGTasDG6OtzVoY8xGFutglvufqmAVIOpajBV7U3tYDjAX64z23_I6mn-_Hro_AIyZm4B</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Sire, Yannick</creator><creator>Wei, Juncheng</creator><creator>Zheng, Youquan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202209</creationdate><title>Extinction behavior for the fast diffusion equations with critical exponent and Dirichlet boundary conditions</title><author>Sire, Yannick ; Wei, Juncheng ; Zheng, Youquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2037-9aa685bc2851b83f35591943046583d5ff9375622741e9b609d55581b92383ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sire, Yannick</creatorcontrib><creatorcontrib>Wei, Juncheng</creatorcontrib><creatorcontrib>Zheng, Youquan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sire, Yannick</au><au>Wei, Juncheng</au><au>Zheng, Youquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extinction behavior for the fast diffusion equations with critical exponent and Dirichlet boundary conditions</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2022-09</date><risdate>2022</risdate><volume>106</volume><issue>2</issue><spage>855</spage><epage>898</epage><pages>855-898</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>For a smooth bounded domain Ω⊆Rn$\Omega \subseteq \mathbb {R}^n$, n⩾3$n\geqslant 3$, we consider the fast diffusion equation with critical sobolev exponent
∂w∂τ=Δwn−2n+2\begin{equation*} \hspace*{7pc}\frac{\partial w}{\partial \tau } =\Delta w^{\frac{n-2}{n+2}}\hspace*{-7pc} \end{equation*}under Dirichlet boundary condition w(·,τ)=0$w(\cdot , \tau ) = 0$ on ∂Ω$\partial \Omega$. Using the parabolic gluing method, we prove existence of an initial data w0$w_0$ such that the corresponding solution has extinction rate of the form
∥w(·,τ)∥L∞(Ω)=γ0(T−τ)n+24ln(T−τ)n+22(n−2)(1+o(1))\begin{equation*} \hspace*{13pc}\Vert w(\cdot , \tau )\Vert _{L^\infty (\Omega )} = \gamma _0(T-\tau )^{\frac{n+2}{4}}{\left|\ln (T-\tau )\right|}^{\frac{n+2}{2(n-2)}}(1+o(1)) \end{equation*}as t→T−$t\rightarrow T^-$, here T>0$T > 0$ is the finite extinction time of w(x,τ)$w(x, \tau )$. This generalizes a result of Galaktionov and King [30] for the radially symmetric case Ω=B1(0):={x∈Rn||x|<1}⊂Rn$\Omega =B_1(0) : = \lbrace x\in \mathbb {R}^n||x| < 1\rbrace \subset \mathbb {R}^n$.</abstract><doi>10.1112/jlms.12587</doi><tpages>44</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2022-09, Vol.106 (2), p.855-898 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_jlms_12587 |
source | Wiley Online Library Core Title |
title | Extinction behavior for the fast diffusion equations with critical exponent and Dirichlet boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extinction%20behavior%20for%20the%20fast%20diffusion%20equations%C2%A0with%20critical%20exponent%20and%20Dirichlet%20boundary%20conditions&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Sire,%20Yannick&rft.date=2022-09&rft.volume=106&rft.issue=2&rft.spage=855&rft.epage=898&rft.pages=855-898&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12587&rft_dat=%3Cwiley_cross%3EJLMS12587%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |