The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials

The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2021-01, Vol.103 (1), p.71-126
Hauptverfasser: De Bie, Hendrik, De Clercq, Hadewijch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue 1
container_start_page 71
container_title Journal of the London Mathematical Society
container_volume 103
creator De Bie, Hendrik
De Clercq, Hadewijch
description The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization of Anq by means of difference operators. This provides an algebraic interpretation for the bispectrality of the multivariate (−q)‐Racah polynomials, as was established in Iliev (Trans. Amer. Math. Soc. 363(3) (2011) 1577–1598). Furthermore, we extend the Bannai–Ito orthogonal polynomials to multiple variables and use these to express the connection coefficients for the q=1 higher rank Bannai–Ito algebra An, thereby proving a conjecture from De Bie et al. (Adv. Math. 303 (2016) 390–414). We derive the orthogonality relation of these multivariate Bannai–Ito polynomials and provide a discrete realization for An.
doi_str_mv 10.1112/jlms.12367
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2247-d1ac4647eb9b6e0d80af49d064ae474ff7f636c69a11d9d233696ee7a3d13db53</originalsourceid><addsrcrecordid>eNp9kLtOwzAYhS0EEqGw8AQZASnFv-3aZISKS1EQEpSBKfoT2zRVLm0SQNk6MiJ4wzwJacPCwnSG850zfIQcAh0CADudp1k1BMal2iIOCOl7So3oNnEoZcKTQNUu2auqOaXAgTKHPE9nxl22q88LzHNM2tX3pC5cTF9MVKKLuXaz17RO3rBMsDbuUfvxtTzu8AeMcbbp_wwXRdrkRZZgWu2THduFOfjNAXm6upyOb7zg_noyPg-8mDGhPA0YCymUifxIGqrPKFrhayoFGqGEtcpKLmPpI4D2NeNc-tIYhVwD19GID8hJ_xuXRVWVxoaLMsmwbEKg4VpKuJYSbqR0MPTwe5Ka5h8yvA3uHvvND5AEabM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Bie, Hendrik ; De Clercq, Hadewijch</creator><creatorcontrib>De Bie, Hendrik ; De Clercq, Hadewijch</creatorcontrib><description>The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization of Anq by means of difference operators. This provides an algebraic interpretation for the bispectrality of the multivariate (−q)‐Racah polynomials, as was established in Iliev (Trans. Amer. Math. Soc. 363(3) (2011) 1577–1598). Furthermore, we extend the Bannai–Ito orthogonal polynomials to multiple variables and use these to express the connection coefficients for the q=1 higher rank Bannai–Ito algebra An, thereby proving a conjecture from De Bie et al. (Adv. Math. 303 (2016) 390–414). We derive the orthogonality relation of these multivariate Bannai–Ito polynomials and provide a discrete realization for An.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12367</identifier><language>eng</language><subject>33C50 ; 33D45 (secondary) ; 33D50 ; 33D80 ; 39A13 ; 81R50 (primary)</subject><ispartof>Journal of the London Mathematical Society, 2021-01, Vol.103 (1), p.71-126</ispartof><rights>2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2247-d1ac4647eb9b6e0d80af49d064ae474ff7f636c69a11d9d233696ee7a3d13db53</citedby><cites>FETCH-LOGICAL-c2247-d1ac4647eb9b6e0d80af49d064ae474ff7f636c69a11d9d233696ee7a3d13db53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12367$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12367$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>De Clercq, Hadewijch</creatorcontrib><title>The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials</title><title>Journal of the London Mathematical Society</title><description>The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization of Anq by means of difference operators. This provides an algebraic interpretation for the bispectrality of the multivariate (−q)‐Racah polynomials, as was established in Iliev (Trans. Amer. Math. Soc. 363(3) (2011) 1577–1598). Furthermore, we extend the Bannai–Ito orthogonal polynomials to multiple variables and use these to express the connection coefficients for the q=1 higher rank Bannai–Ito algebra An, thereby proving a conjecture from De Bie et al. (Adv. Math. 303 (2016) 390–414). We derive the orthogonality relation of these multivariate Bannai–Ito polynomials and provide a discrete realization for An.</description><subject>33C50</subject><subject>33D45 (secondary)</subject><subject>33D50</subject><subject>33D80</subject><subject>39A13</subject><subject>81R50 (primary)</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAYhS0EEqGw8AQZASnFv-3aZISKS1EQEpSBKfoT2zRVLm0SQNk6MiJ4wzwJacPCwnSG850zfIQcAh0CADudp1k1BMal2iIOCOl7So3oNnEoZcKTQNUu2auqOaXAgTKHPE9nxl22q88LzHNM2tX3pC5cTF9MVKKLuXaz17RO3rBMsDbuUfvxtTzu8AeMcbbp_wwXRdrkRZZgWu2THduFOfjNAXm6upyOb7zg_noyPg-8mDGhPA0YCymUifxIGqrPKFrhayoFGqGEtcpKLmPpI4D2NeNc-tIYhVwD19GID8hJ_xuXRVWVxoaLMsmwbEKg4VpKuJYSbqR0MPTwe5Ka5h8yvA3uHvvND5AEabM</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>De Bie, Hendrik</creator><creator>De Clercq, Hadewijch</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials</title><author>De Bie, Hendrik ; De Clercq, Hadewijch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2247-d1ac4647eb9b6e0d80af49d064ae474ff7f636c69a11d9d233696ee7a3d13db53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>33C50</topic><topic>33D45 (secondary)</topic><topic>33D50</topic><topic>33D80</topic><topic>39A13</topic><topic>81R50 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>De Clercq, Hadewijch</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bie, Hendrik</au><au>De Clercq, Hadewijch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2021-01</date><risdate>2021</risdate><volume>103</volume><issue>1</issue><spage>71</spage><epage>126</epage><pages>71-126</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization of Anq by means of difference operators. This provides an algebraic interpretation for the bispectrality of the multivariate (−q)‐Racah polynomials, as was established in Iliev (Trans. Amer. Math. Soc. 363(3) (2011) 1577–1598). Furthermore, we extend the Bannai–Ito orthogonal polynomials to multiple variables and use these to express the connection coefficients for the q=1 higher rank Bannai–Ito algebra An, thereby proving a conjecture from De Bie et al. (Adv. Math. 303 (2016) 390–414). We derive the orthogonality relation of these multivariate Bannai–Ito polynomials and provide a discrete realization for An.</abstract><doi>10.1112/jlms.12367</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2021-01, Vol.103 (1), p.71-126
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_12367
source Wiley Online Library Journals Frontfile Complete
subjects 33C50
33D45 (secondary)
33D50
33D80
39A13
81R50 (primary)
title The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20q%E2%80%90Bannai%E2%80%93Ito%20algebra%20and%20multivariate%20(%E2%88%92q)%E2%80%90Racah%20and%20Bannai%E2%80%93Ito%20polynomials&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=De%20Bie,%20Hendrik&rft.date=2021-01&rft.volume=103&rft.issue=1&rft.spage=71&rft.epage=126&rft.pages=71-126&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12367&rft_dat=%3Cwiley_cross%3EJLMS12367%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true