The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials
The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2021-01, Vol.103 (1), p.71-126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Journal of the London Mathematical Society |
container_volume | 103 |
creator | De Bie, Hendrik De Clercq, Hadewijch |
description | The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization of Anq by means of difference operators. This provides an algebraic interpretation for the bispectrality of the multivariate (−q)‐Racah polynomials, as was established in Iliev (Trans. Amer. Math. Soc. 363(3) (2011) 1577–1598).
Furthermore, we extend the Bannai–Ito orthogonal polynomials to multiple variables and use these to express the connection coefficients for the q=1 higher rank Bannai–Ito algebra An, thereby proving a conjecture from De Bie et al. (Adv. Math. 303 (2016) 390–414). We derive the orthogonality relation of these multivariate Bannai–Ito polynomials and provide a discrete realization for An. |
doi_str_mv | 10.1112/jlms.12367 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2247-d1ac4647eb9b6e0d80af49d064ae474ff7f636c69a11d9d233696ee7a3d13db53</originalsourceid><addsrcrecordid>eNp9kLtOwzAYhS0EEqGw8AQZASnFv-3aZISKS1EQEpSBKfoT2zRVLm0SQNk6MiJ4wzwJacPCwnSG850zfIQcAh0CADudp1k1BMal2iIOCOl7So3oNnEoZcKTQNUu2auqOaXAgTKHPE9nxl22q88LzHNM2tX3pC5cTF9MVKKLuXaz17RO3rBMsDbuUfvxtTzu8AeMcbbp_wwXRdrkRZZgWu2THduFOfjNAXm6upyOb7zg_noyPg-8mDGhPA0YCymUifxIGqrPKFrhayoFGqGEtcpKLmPpI4D2NeNc-tIYhVwD19GID8hJ_xuXRVWVxoaLMsmwbEKg4VpKuJYSbqR0MPTwe5Ka5h8yvA3uHvvND5AEabM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De Bie, Hendrik ; De Clercq, Hadewijch</creator><creatorcontrib>De Bie, Hendrik ; De Clercq, Hadewijch</creatorcontrib><description>The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization of Anq by means of difference operators. This provides an algebraic interpretation for the bispectrality of the multivariate (−q)‐Racah polynomials, as was established in Iliev (Trans. Amer. Math. Soc. 363(3) (2011) 1577–1598).
Furthermore, we extend the Bannai–Ito orthogonal polynomials to multiple variables and use these to express the connection coefficients for the q=1 higher rank Bannai–Ito algebra An, thereby proving a conjecture from De Bie et al. (Adv. Math. 303 (2016) 390–414). We derive the orthogonality relation of these multivariate Bannai–Ito polynomials and provide a discrete realization for An.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12367</identifier><language>eng</language><subject>33C50 ; 33D45 (secondary) ; 33D50 ; 33D80 ; 39A13 ; 81R50 (primary)</subject><ispartof>Journal of the London Mathematical Society, 2021-01, Vol.103 (1), p.71-126</ispartof><rights>2020 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2247-d1ac4647eb9b6e0d80af49d064ae474ff7f636c69a11d9d233696ee7a3d13db53</citedby><cites>FETCH-LOGICAL-c2247-d1ac4647eb9b6e0d80af49d064ae474ff7f636c69a11d9d233696ee7a3d13db53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12367$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12367$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>De Clercq, Hadewijch</creatorcontrib><title>The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials</title><title>Journal of the London Mathematical Society</title><description>The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization of Anq by means of difference operators. This provides an algebraic interpretation for the bispectrality of the multivariate (−q)‐Racah polynomials, as was established in Iliev (Trans. Amer. Math. Soc. 363(3) (2011) 1577–1598).
Furthermore, we extend the Bannai–Ito orthogonal polynomials to multiple variables and use these to express the connection coefficients for the q=1 higher rank Bannai–Ito algebra An, thereby proving a conjecture from De Bie et al. (Adv. Math. 303 (2016) 390–414). We derive the orthogonality relation of these multivariate Bannai–Ito polynomials and provide a discrete realization for An.</description><subject>33C50</subject><subject>33D45 (secondary)</subject><subject>33D50</subject><subject>33D80</subject><subject>39A13</subject><subject>81R50 (primary)</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAYhS0EEqGw8AQZASnFv-3aZISKS1EQEpSBKfoT2zRVLm0SQNk6MiJ4wzwJacPCwnSG850zfIQcAh0CADudp1k1BMal2iIOCOl7So3oNnEoZcKTQNUu2auqOaXAgTKHPE9nxl22q88LzHNM2tX3pC5cTF9MVKKLuXaz17RO3rBMsDbuUfvxtTzu8AeMcbbp_wwXRdrkRZZgWu2THduFOfjNAXm6upyOb7zg_noyPg-8mDGhPA0YCymUifxIGqrPKFrhayoFGqGEtcpKLmPpI4D2NeNc-tIYhVwD19GID8hJ_xuXRVWVxoaLMsmwbEKg4VpKuJYSbqR0MPTwe5Ka5h8yvA3uHvvND5AEabM</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>De Bie, Hendrik</creator><creator>De Clercq, Hadewijch</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials</title><author>De Bie, Hendrik ; De Clercq, Hadewijch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2247-d1ac4647eb9b6e0d80af49d064ae474ff7f636c69a11d9d233696ee7a3d13db53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>33C50</topic><topic>33D45 (secondary)</topic><topic>33D50</topic><topic>33D80</topic><topic>39A13</topic><topic>81R50 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>De Clercq, Hadewijch</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bie, Hendrik</au><au>De Clercq, Hadewijch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2021-01</date><risdate>2021</risdate><volume>103</volume><issue>1</issue><spage>71</spage><epage>126</epage><pages>71-126</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>The Gasper and Rahman multivariate (−q)‐Racah polynomials appear as connection coefficients between bases diagonalizing different abelian subalgebras of the recently defined higher rank q‐Bannai–Ito algebra Anq. Lifting the action of the algebra to the connection coefficients, we find a realization of Anq by means of difference operators. This provides an algebraic interpretation for the bispectrality of the multivariate (−q)‐Racah polynomials, as was established in Iliev (Trans. Amer. Math. Soc. 363(3) (2011) 1577–1598).
Furthermore, we extend the Bannai–Ito orthogonal polynomials to multiple variables and use these to express the connection coefficients for the q=1 higher rank Bannai–Ito algebra An, thereby proving a conjecture from De Bie et al. (Adv. Math. 303 (2016) 390–414). We derive the orthogonality relation of these multivariate Bannai–Ito polynomials and provide a discrete realization for An.</abstract><doi>10.1112/jlms.12367</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2021-01, Vol.103 (1), p.71-126 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_jlms_12367 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 33C50 33D45 (secondary) 33D50 33D80 39A13 81R50 (primary) |
title | The q‐Bannai–Ito algebra and multivariate (−q)‐Racah and Bannai–Ito polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20q%E2%80%90Bannai%E2%80%93Ito%20algebra%20and%20multivariate%20(%E2%88%92q)%E2%80%90Racah%20and%20Bannai%E2%80%93Ito%20polynomials&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=De%20Bie,%20Hendrik&rft.date=2021-01&rft.volume=103&rft.issue=1&rft.spage=71&rft.epage=126&rft.pages=71-126&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12367&rft_dat=%3Cwiley_cross%3EJLMS12367%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |