Characteristic numbers of manifold bundles over surfaces with highly connected fibers
We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2020-10, Vol.102 (2), p.879-904 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 904 |
---|---|
container_issue | 2 |
container_start_page | 879 |
container_title | Journal of the London Mathematical Society |
container_volume | 102 |
creator | Krannich, Manuel Reinhold, Jens |
description | We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and Â‐genera, and compute the second integral cohomology of BDiff+(M) up to torsion in terms of generalized Miller–Morita–Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber M and discuss the resulting obstructions to smoothing them. |
doi_str_mv | 10.1112/jlms.12344 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3094-aaaa99cadd4c87228e13d1f0af72d98cac8e703549e7a5bb6f4f131dc26a8bbb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEc3_oKshY65adq0Sxl8UnGhsy552gx9SNI69N_bWtfezeVevnM4HISugWwBgN4emjZsgSaMnaAIWFbEnKfkFEWEUBZnQPg5ugjhQAgkQGiE9rtaeKEG410YnMLd2ErjA-4tbkXnbN9oLMdON2b-fRuPw-itUPN1dEONa_dZNxNWfdeZ2URj6xb5JTqzognm6m9v0P7h_mP3FJdvj8-7uzJWCSlYLOYpCiW0ZirnlOYGEg2WCMupLnIlVG44SVJWGC5SKTPL7JxbK5qJXEqZbNDN6qt8H4I3tvryrhV-qoBUSyHVUkj1W8gMwwofXWOmf8jqpXx9XzU_PZlmBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characteristic numbers of manifold bundles over surfaces with highly connected fibers</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Krannich, Manuel ; Reinhold, Jens</creator><creatorcontrib>Krannich, Manuel ; Reinhold, Jens</creatorcontrib><description>We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and Â‐genera, and compute the second integral cohomology of BDiff+(M) up to torsion in terms of generalized Miller–Morita–Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber M and discuss the resulting obstructions to smoothing them.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12344</identifier><language>eng</language><subject>55R10 ; 55R40 (primary) ; 57R20 ; 57R75 (secondary)</subject><ispartof>Journal of the London Mathematical Society, 2020-10, Vol.102 (2), p.879-904</ispartof><rights>2020 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3094-aaaa99cadd4c87228e13d1f0af72d98cac8e703549e7a5bb6f4f131dc26a8bbb3</citedby><cites>FETCH-LOGICAL-c3094-aaaa99cadd4c87228e13d1f0af72d98cac8e703549e7a5bb6f4f131dc26a8bbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12344$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12344$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Krannich, Manuel</creatorcontrib><creatorcontrib>Reinhold, Jens</creatorcontrib><title>Characteristic numbers of manifold bundles over surfaces with highly connected fibers</title><title>Journal of the London Mathematical Society</title><description>We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and Â‐genera, and compute the second integral cohomology of BDiff+(M) up to torsion in terms of generalized Miller–Morita–Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber M and discuss the resulting obstructions to smoothing them.</description><subject>55R10</subject><subject>55R40 (primary)</subject><subject>57R20</subject><subject>57R75 (secondary)</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEtLxDAUhYMoWEc3_oKshY65adq0Sxl8UnGhsy552gx9SNI69N_bWtfezeVevnM4HISugWwBgN4emjZsgSaMnaAIWFbEnKfkFEWEUBZnQPg5ugjhQAgkQGiE9rtaeKEG410YnMLd2ErjA-4tbkXnbN9oLMdON2b-fRuPw-itUPN1dEONa_dZNxNWfdeZ2URj6xb5JTqzognm6m9v0P7h_mP3FJdvj8-7uzJWCSlYLOYpCiW0ZirnlOYGEg2WCMupLnIlVG44SVJWGC5SKTPL7JxbK5qJXEqZbNDN6qt8H4I3tvryrhV-qoBUSyHVUkj1W8gMwwofXWOmf8jqpXx9XzU_PZlmBg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Krannich, Manuel</creator><creator>Reinhold, Jens</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202010</creationdate><title>Characteristic numbers of manifold bundles over surfaces with highly connected fibers</title><author>Krannich, Manuel ; Reinhold, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3094-aaaa99cadd4c87228e13d1f0af72d98cac8e703549e7a5bb6f4f131dc26a8bbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>55R10</topic><topic>55R40 (primary)</topic><topic>57R20</topic><topic>57R75 (secondary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krannich, Manuel</creatorcontrib><creatorcontrib>Reinhold, Jens</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krannich, Manuel</au><au>Reinhold, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristic numbers of manifold bundles over surfaces with highly connected fibers</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2020-10</date><risdate>2020</risdate><volume>102</volume><issue>2</issue><spage>879</spage><epage>904</epage><pages>879-904</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and Â‐genera, and compute the second integral cohomology of BDiff+(M) up to torsion in terms of generalized Miller–Morita–Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber M and discuss the resulting obstructions to smoothing them.</abstract><doi>10.1112/jlms.12344</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2020-10, Vol.102 (2), p.879-904 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_jlms_12344 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | 55R10 55R40 (primary) 57R20 57R75 (secondary) |
title | Characteristic numbers of manifold bundles over surfaces with highly connected fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristic%20numbers%20of%20manifold%20bundles%20over%20surfaces%20with%20highly%20connected%20fibers&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Krannich,%20Manuel&rft.date=2020-10&rft.volume=102&rft.issue=2&rft.spage=879&rft.epage=904&rft.pages=879-904&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12344&rft_dat=%3Cwiley_cross%3EJLMS12344%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |