Characteristic numbers of manifold bundles over surfaces with highly connected fibers

We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2020-10, Vol.102 (2), p.879-904
Hauptverfasser: Krannich, Manuel, Reinhold, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 904
container_issue 2
container_start_page 879
container_title Journal of the London Mathematical Society
container_volume 102
creator Krannich, Manuel
Reinhold, Jens
description We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and Â‐genera, and compute the second integral cohomology of BDiff+(M) up to torsion in terms of generalized Miller–Morita–Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber M and discuss the resulting obstructions to smoothing them.
doi_str_mv 10.1112/jlms.12344
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3094-aaaa99cadd4c87228e13d1f0af72d98cac8e703549e7a5bb6f4f131dc26a8bbb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEc3_oKshY65adq0Sxl8UnGhsy552gx9SNI69N_bWtfezeVevnM4HISugWwBgN4emjZsgSaMnaAIWFbEnKfkFEWEUBZnQPg5ugjhQAgkQGiE9rtaeKEG410YnMLd2ErjA-4tbkXnbN9oLMdON2b-fRuPw-itUPN1dEONa_dZNxNWfdeZ2URj6xb5JTqzognm6m9v0P7h_mP3FJdvj8-7uzJWCSlYLOYpCiW0ZirnlOYGEg2WCMupLnIlVG44SVJWGC5SKTPL7JxbK5qJXEqZbNDN6qt8H4I3tvryrhV-qoBUSyHVUkj1W8gMwwofXWOmf8jqpXx9XzU_PZlmBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characteristic numbers of manifold bundles over surfaces with highly connected fibers</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Krannich, Manuel ; Reinhold, Jens</creator><creatorcontrib>Krannich, Manuel ; Reinhold, Jens</creatorcontrib><description>We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and Â‐genera, and compute the second integral cohomology of BDiff+(M) up to torsion in terms of generalized Miller–Morita–Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber M and discuss the resulting obstructions to smoothing them.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12344</identifier><language>eng</language><subject>55R10 ; 55R40 (primary) ; 57R20 ; 57R75 (secondary)</subject><ispartof>Journal of the London Mathematical Society, 2020-10, Vol.102 (2), p.879-904</ispartof><rights>2020 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3094-aaaa99cadd4c87228e13d1f0af72d98cac8e703549e7a5bb6f4f131dc26a8bbb3</citedby><cites>FETCH-LOGICAL-c3094-aaaa99cadd4c87228e13d1f0af72d98cac8e703549e7a5bb6f4f131dc26a8bbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12344$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12344$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Krannich, Manuel</creatorcontrib><creatorcontrib>Reinhold, Jens</creatorcontrib><title>Characteristic numbers of manifold bundles over surfaces with highly connected fibers</title><title>Journal of the London Mathematical Society</title><description>We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and Â‐genera, and compute the second integral cohomology of BDiff+(M) up to torsion in terms of generalized Miller–Morita–Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber M and discuss the resulting obstructions to smoothing them.</description><subject>55R10</subject><subject>55R40 (primary)</subject><subject>57R20</subject><subject>57R75 (secondary)</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEtLxDAUhYMoWEc3_oKshY65adq0Sxl8UnGhsy552gx9SNI69N_bWtfezeVevnM4HISugWwBgN4emjZsgSaMnaAIWFbEnKfkFEWEUBZnQPg5ugjhQAgkQGiE9rtaeKEG410YnMLd2ErjA-4tbkXnbN9oLMdON2b-fRuPw-itUPN1dEONa_dZNxNWfdeZ2URj6xb5JTqzognm6m9v0P7h_mP3FJdvj8-7uzJWCSlYLOYpCiW0ZirnlOYGEg2WCMupLnIlVG44SVJWGC5SKTPL7JxbK5qJXEqZbNDN6qt8H4I3tvryrhV-qoBUSyHVUkj1W8gMwwofXWOmf8jqpXx9XzU_PZlmBg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Krannich, Manuel</creator><creator>Reinhold, Jens</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202010</creationdate><title>Characteristic numbers of manifold bundles over surfaces with highly connected fibers</title><author>Krannich, Manuel ; Reinhold, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3094-aaaa99cadd4c87228e13d1f0af72d98cac8e703549e7a5bb6f4f131dc26a8bbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>55R10</topic><topic>55R40 (primary)</topic><topic>57R20</topic><topic>57R75 (secondary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krannich, Manuel</creatorcontrib><creatorcontrib>Reinhold, Jens</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krannich, Manuel</au><au>Reinhold, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristic numbers of manifold bundles over surfaces with highly connected fibers</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2020-10</date><risdate>2020</risdate><volume>102</volume><issue>2</issue><spage>879</spage><epage>904</epage><pages>879-904</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>We study smooth bundles over surfaces with highly connected almost parallelizable fiber M of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and Â‐genera, and compute the second integral cohomology of BDiff+(M) up to torsion in terms of generalized Miller–Morita–Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber M and discuss the resulting obstructions to smoothing them.</abstract><doi>10.1112/jlms.12344</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2020-10, Vol.102 (2), p.879-904
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_12344
source Wiley Online Library - AutoHoldings Journals
subjects 55R10
55R40 (primary)
57R20
57R75 (secondary)
title Characteristic numbers of manifold bundles over surfaces with highly connected fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristic%20numbers%20of%20manifold%20bundles%20over%20surfaces%20with%20highly%20connected%20fibers&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Krannich,%20Manuel&rft.date=2020-10&rft.volume=102&rft.issue=2&rft.spage=879&rft.epage=904&rft.pages=879-904&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12344&rft_dat=%3Cwiley_cross%3EJLMS12344%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true