New semifields and new MRD codes from skew polynomial rings
In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters fo...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2020-02, Vol.101 (1), p.432-456 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 1 |
container_start_page | 432 |
container_title | Journal of the London Mathematical Society |
container_volume | 101 |
creator | Sheekey, John |
description | In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters for which no examples were previously known. In the case of semifields two dimensions over a nucleus and four‐dimensional over their centre, the construction gives all possible examples.
Furthermore we embed these semifields in a new family of maximum rank‐distance codes, encompassing most known current constructions, including the (twisted) Delsarte–Gabidulin codes, and containing new examples for most parameters. |
doi_str_mv | 10.1112/jlms.12281 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3091-d6508c713bb7f6fb9b5dd87efa8ef378f3e5aa92e5383365a8ce1df3c8e3d0a73</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoWKsbf0HWwtTcpJlkcCXV-mCq4GMdMsmNTJ1HSRZl_r1Tx7WrA4fvHPgIuQS2AAB-vW3atADONRyRGSzzIlNKsmMyY4wvsxyYOiVnKW0ZAwGMz8jNC-5pwrYONTY-Udt52o3V5u2Out5joiH2LU3fY7frm6Hr29o2NNbdVzonJ8E2CS_-ck4-1_cfq8esfH14Wt2WmROsgMznkmmnQFSVCnmoikp6rxUGqzEIpYNAaW3BUQotRC6tdgg-CKdReGaVmJOr6dfFPqWIwexi3do4GGDmoG0O2uZXe4Rhgvd1g8M_pHkuN-_T5gdqo1rn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New semifields and new MRD codes from skew polynomial rings</title><source>Wiley Online Library All Journals</source><creator>Sheekey, John</creator><creatorcontrib>Sheekey, John</creatorcontrib><description>In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters for which no examples were previously known. In the case of semifields two dimensions over a nucleus and four‐dimensional over their centre, the construction gives all possible examples.
Furthermore we embed these semifields in a new family of maximum rank‐distance codes, encompassing most known current constructions, including the (twisted) Delsarte–Gabidulin codes, and containing new examples for most parameters.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12281</identifier><language>eng</language><subject>12K10 (primary) ; 16S36 (secondary) ; 17A35</subject><ispartof>Journal of the London Mathematical Society, 2020-02, Vol.101 (1), p.432-456</ispartof><rights>2019 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3091-d6508c713bb7f6fb9b5dd87efa8ef378f3e5aa92e5383365a8ce1df3c8e3d0a73</citedby><cites>FETCH-LOGICAL-c3091-d6508c713bb7f6fb9b5dd87efa8ef378f3e5aa92e5383365a8ce1df3c8e3d0a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sheekey, John</creatorcontrib><title>New semifields and new MRD codes from skew polynomial rings</title><title>Journal of the London Mathematical Society</title><description>In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters for which no examples were previously known. In the case of semifields two dimensions over a nucleus and four‐dimensional over their centre, the construction gives all possible examples.
Furthermore we embed these semifields in a new family of maximum rank‐distance codes, encompassing most known current constructions, including the (twisted) Delsarte–Gabidulin codes, and containing new examples for most parameters.</description><subject>12K10 (primary)</subject><subject>16S36 (secondary)</subject><subject>17A35</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEUhYMoWKsbf0HWwtTcpJlkcCXV-mCq4GMdMsmNTJ1HSRZl_r1Tx7WrA4fvHPgIuQS2AAB-vW3atADONRyRGSzzIlNKsmMyY4wvsxyYOiVnKW0ZAwGMz8jNC-5pwrYONTY-Udt52o3V5u2Out5joiH2LU3fY7frm6Hr29o2NNbdVzonJ8E2CS_-ck4-1_cfq8esfH14Wt2WmROsgMznkmmnQFSVCnmoikp6rxUGqzEIpYNAaW3BUQotRC6tdgg-CKdReGaVmJOr6dfFPqWIwexi3do4GGDmoG0O2uZXe4Rhgvd1g8M_pHkuN-_T5gdqo1rn</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Sheekey, John</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202002</creationdate><title>New semifields and new MRD codes from skew polynomial rings</title><author>Sheekey, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3091-d6508c713bb7f6fb9b5dd87efa8ef378f3e5aa92e5383365a8ce1df3c8e3d0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>12K10 (primary)</topic><topic>16S36 (secondary)</topic><topic>17A35</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheekey, John</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheekey, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New semifields and new MRD codes from skew polynomial rings</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2020-02</date><risdate>2020</risdate><volume>101</volume><issue>1</issue><spage>432</spage><epage>456</epage><pages>432-456</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters for which no examples were previously known. In the case of semifields two dimensions over a nucleus and four‐dimensional over their centre, the construction gives all possible examples.
Furthermore we embed these semifields in a new family of maximum rank‐distance codes, encompassing most known current constructions, including the (twisted) Delsarte–Gabidulin codes, and containing new examples for most parameters.</abstract><doi>10.1112/jlms.12281</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2020-02, Vol.101 (1), p.432-456 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_jlms_12281 |
source | Wiley Online Library All Journals |
subjects | 12K10 (primary) 16S36 (secondary) 17A35 |
title | New semifields and new MRD codes from skew polynomial rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20semifields%20and%20new%20MRD%20codes%20from%20skew%20polynomial%20rings&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Sheekey,%20John&rft.date=2020-02&rft.volume=101&rft.issue=1&rft.spage=432&rft.epage=456&rft.pages=432-456&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12281&rft_dat=%3Cwiley_cross%3EJLMS12281%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |