New semifields and new MRD codes from skew polynomial rings

In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2020-02, Vol.101 (1), p.432-456
1. Verfasser: Sheekey, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 1
container_start_page 432
container_title Journal of the London Mathematical Society
container_volume 101
creator Sheekey, John
description In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters for which no examples were previously known. In the case of semifields two dimensions over a nucleus and four‐dimensional over their centre, the construction gives all possible examples. Furthermore we embed these semifields in a new family of maximum rank‐distance codes, encompassing most known current constructions, including the (twisted) Delsarte–Gabidulin codes, and containing new examples for most parameters.
doi_str_mv 10.1112/jlms.12281
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_jlms_12281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JLMS12281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3091-d6508c713bb7f6fb9b5dd87efa8ef378f3e5aa92e5383365a8ce1df3c8e3d0a73</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoWKsbf0HWwtTcpJlkcCXV-mCq4GMdMsmNTJ1HSRZl_r1Tx7WrA4fvHPgIuQS2AAB-vW3atADONRyRGSzzIlNKsmMyY4wvsxyYOiVnKW0ZAwGMz8jNC-5pwrYONTY-Udt52o3V5u2Out5joiH2LU3fY7frm6Hr29o2NNbdVzonJ8E2CS_-ck4-1_cfq8esfH14Wt2WmROsgMznkmmnQFSVCnmoikp6rxUGqzEIpYNAaW3BUQotRC6tdgg-CKdReGaVmJOr6dfFPqWIwexi3do4GGDmoG0O2uZXe4Rhgvd1g8M_pHkuN-_T5gdqo1rn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New semifields and new MRD codes from skew polynomial rings</title><source>Wiley Online Library All Journals</source><creator>Sheekey, John</creator><creatorcontrib>Sheekey, John</creatorcontrib><description>In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters for which no examples were previously known. In the case of semifields two dimensions over a nucleus and four‐dimensional over their centre, the construction gives all possible examples. Furthermore we embed these semifields in a new family of maximum rank‐distance codes, encompassing most known current constructions, including the (twisted) Delsarte–Gabidulin codes, and containing new examples for most parameters.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms.12281</identifier><language>eng</language><subject>12K10 (primary) ; 16S36 (secondary) ; 17A35</subject><ispartof>Journal of the London Mathematical Society, 2020-02, Vol.101 (1), p.432-456</ispartof><rights>2019 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3091-d6508c713bb7f6fb9b5dd87efa8ef378f3e5aa92e5383365a8ce1df3c8e3d0a73</citedby><cites>FETCH-LOGICAL-c3091-d6508c713bb7f6fb9b5dd87efa8ef378f3e5aa92e5383365a8ce1df3c8e3d0a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms.12281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms.12281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sheekey, John</creatorcontrib><title>New semifields and new MRD codes from skew polynomial rings</title><title>Journal of the London Mathematical Society</title><description>In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters for which no examples were previously known. In the case of semifields two dimensions over a nucleus and four‐dimensional over their centre, the construction gives all possible examples. Furthermore we embed these semifields in a new family of maximum rank‐distance codes, encompassing most known current constructions, including the (twisted) Delsarte–Gabidulin codes, and containing new examples for most parameters.</description><subject>12K10 (primary)</subject><subject>16S36 (secondary)</subject><subject>17A35</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEUhYMoWKsbf0HWwtTcpJlkcCXV-mCq4GMdMsmNTJ1HSRZl_r1Tx7WrA4fvHPgIuQS2AAB-vW3atADONRyRGSzzIlNKsmMyY4wvsxyYOiVnKW0ZAwGMz8jNC-5pwrYONTY-Udt52o3V5u2Out5joiH2LU3fY7frm6Hr29o2NNbdVzonJ8E2CS_-ck4-1_cfq8esfH14Wt2WmROsgMznkmmnQFSVCnmoikp6rxUGqzEIpYNAaW3BUQotRC6tdgg-CKdReGaVmJOr6dfFPqWIwexi3do4GGDmoG0O2uZXe4Rhgvd1g8M_pHkuN-_T5gdqo1rn</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Sheekey, John</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202002</creationdate><title>New semifields and new MRD codes from skew polynomial rings</title><author>Sheekey, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3091-d6508c713bb7f6fb9b5dd87efa8ef378f3e5aa92e5383365a8ce1df3c8e3d0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>12K10 (primary)</topic><topic>16S36 (secondary)</topic><topic>17A35</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheekey, John</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheekey, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New semifields and new MRD codes from skew polynomial rings</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2020-02</date><risdate>2020</risdate><volume>101</volume><issue>1</issue><spage>432</spage><epage>456</epage><pages>432-456</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>In this article, we construct a new family of semifields, containing and extending two well‐known families, namely Albert's generalised twisted fields and Petit's cyclic semifields (also known as Johnson–Jha semifields). The construction also gives examples of semifields with parameters for which no examples were previously known. In the case of semifields two dimensions over a nucleus and four‐dimensional over their centre, the construction gives all possible examples. Furthermore we embed these semifields in a new family of maximum rank‐distance codes, encompassing most known current constructions, including the (twisted) Delsarte–Gabidulin codes, and containing new examples for most parameters.</abstract><doi>10.1112/jlms.12281</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2020-02, Vol.101 (1), p.432-456
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_jlms_12281
source Wiley Online Library All Journals
subjects 12K10 (primary)
16S36 (secondary)
17A35
title New semifields and new MRD codes from skew polynomial rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20semifields%20and%20new%20MRD%20codes%20from%20skew%20polynomial%20rings&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Sheekey,%20John&rft.date=2020-02&rft.volume=101&rft.issue=1&rft.spage=432&rft.epage=456&rft.pages=432-456&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms.12281&rft_dat=%3Cwiley_cross%3EJLMS12281%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true