Newton's lemma XXVIII on integrable ovals in higher dimensions and reflection groups

Abstract We prove that there are no bounded domains with smooth boundaries in even-dimensional Euclidean spaces, such that the volumes cut off from them by affine hyperplanes depend algebraically on these hyperplanes. For convex ovals in ${{{\mathbb R}}}^2$, this is Lemma XXVIII from Newton's &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2015-04, Vol.47 (2), p.290-300
1. Verfasser: Vassiliev, V. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We prove that there are no bounded domains with smooth boundaries in even-dimensional Euclidean spaces, such that the volumes cut off from them by affine hyperplanes depend algebraically on these hyperplanes. For convex ovals in ${{{\mathbb R}}}^2$, this is Lemma XXVIII from Newton's 'Philosophiae naturalis principia mathematica'.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms/bdv002