Newton's lemma XXVIII on integrable ovals in higher dimensions and reflection groups
Abstract We prove that there are no bounded domains with smooth boundaries in even-dimensional Euclidean spaces, such that the volumes cut off from them by affine hyperplanes depend algebraically on these hyperplanes. For convex ovals in ${{{\mathbb R}}}^2$, this is Lemma XXVIII from Newton's &...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2015-04, Vol.47 (2), p.290-300 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We prove that there are no bounded domains with smooth boundaries in even-dimensional Euclidean spaces, such that the volumes cut off from them by affine hyperplanes depend algebraically on these hyperplanes. For convex ovals in ${{{\mathbb R}}}^2$, this is Lemma XXVIII from Newton's 'Philosophiae naturalis principia mathematica'. |
---|---|
ISSN: | 0024-6093 1469-2120 |
DOI: | 10.1112/blms/bdv002 |