Normal generation of locally compact groups

It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2013-08, Vol.45 (4), p.734-738
Hauptverfasser: Eisenmann, A., Monod, N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 4
container_start_page 734
container_title The Bulletin of the London Mathematical Society
container_volume 45
creator Eisenmann, A.
Monod, N.
description It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete quotients (which is probably a necessary restriction).
doi_str_mv 10.1112/blms/bdt009
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bdt009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS0734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3124-5af8a47d38347edd48f8417a70cf323f69e6c1649eac301faa5d25eaaee960393</originalsourceid><addsrcrecordid>eNp9j71OwzAURi0EEqEw8QLZq9B7YyeOR6j4kwIMwGzdOnYV5NSRHYT69rQKM9O3HH1Hh7FrhBtELFcbP6TVppsA1AnLUNSqKLGEU5YBlKKoQfFzdpHSFwBykJix5WuIA_l8a3c20tSHXR5c7oMh7_e5CcNIZsq3MXyP6ZKdOfLJXv3tgn0-3H-sn4r27fF5fdsWhuPBUpFrSMiON1xI23WicY1ASRKM4yV3tbK1wVooS4YDOqKqKytLZK2qgSu-YMv518SQUrROj7EfKO41gj526mOnnjsPNM70T-_t_j9U37Uv7yC54L-Jzlcx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normal generation of locally compact groups</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Eisenmann, A. ; Monod, N.</creator><creatorcontrib>Eisenmann, A. ; Monod, N.</creatorcontrib><description>It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete quotients (which is probably a necessary restriction).</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bdt009</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2013-08, Vol.45 (4), p.734-738</ispartof><rights>2013 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3124-5af8a47d38347edd48f8417a70cf323f69e6c1649eac301faa5d25eaaee960393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbdt009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbdt009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Eisenmann, A.</creatorcontrib><creatorcontrib>Monod, N.</creatorcontrib><title>Normal generation of locally compact groups</title><title>The Bulletin of the London Mathematical Society</title><description>It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete quotients (which is probably a necessary restriction).</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9j71OwzAURi0EEqEw8QLZq9B7YyeOR6j4kwIMwGzdOnYV5NSRHYT69rQKM9O3HH1Hh7FrhBtELFcbP6TVppsA1AnLUNSqKLGEU5YBlKKoQfFzdpHSFwBykJix5WuIA_l8a3c20tSHXR5c7oMh7_e5CcNIZsq3MXyP6ZKdOfLJXv3tgn0-3H-sn4r27fF5fdsWhuPBUpFrSMiON1xI23WicY1ASRKM4yV3tbK1wVooS4YDOqKqKytLZK2qgSu-YMv518SQUrROj7EfKO41gj526mOnnjsPNM70T-_t_j9U37Uv7yC54L-Jzlcx</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Eisenmann, A.</creator><creator>Monod, N.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201308</creationdate><title>Normal generation of locally compact groups</title><author>Eisenmann, A. ; Monod, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3124-5af8a47d38347edd48f8417a70cf323f69e6c1649eac301faa5d25eaaee960393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenmann, A.</creatorcontrib><creatorcontrib>Monod, N.</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenmann, A.</au><au>Monod, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal generation of locally compact groups</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2013-08</date><risdate>2013</risdate><volume>45</volume><issue>4</issue><spage>734</spage><epage>738</epage><pages>734-738</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete quotients (which is probably a necessary restriction).</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bdt009</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2013-08, Vol.45 (4), p.734-738
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_bdt009
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title Normal generation of locally compact groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20generation%20of%20locally%20compact%20groups&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Eisenmann,%20A.&rft.date=2013-08&rft.volume=45&rft.issue=4&rft.spage=734&rft.epage=738&rft.pages=734-738&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bdt009&rft_dat=%3Cwiley_cross%3EBLMS0734%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true