Normal generation of locally compact groups
It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete qu...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2013-08, Vol.45 (4), p.734-738 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 4 |
container_start_page | 734 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 45 |
creator | Eisenmann, A. Monod, N. |
description | It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete quotients (which is probably a necessary restriction). |
doi_str_mv | 10.1112/blms/bdt009 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bdt009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS0734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3124-5af8a47d38347edd48f8417a70cf323f69e6c1649eac301faa5d25eaaee960393</originalsourceid><addsrcrecordid>eNp9j71OwzAURi0EEqEw8QLZq9B7YyeOR6j4kwIMwGzdOnYV5NSRHYT69rQKM9O3HH1Hh7FrhBtELFcbP6TVppsA1AnLUNSqKLGEU5YBlKKoQfFzdpHSFwBykJix5WuIA_l8a3c20tSHXR5c7oMh7_e5CcNIZsq3MXyP6ZKdOfLJXv3tgn0-3H-sn4r27fF5fdsWhuPBUpFrSMiON1xI23WicY1ASRKM4yV3tbK1wVooS4YDOqKqKytLZK2qgSu-YMv518SQUrROj7EfKO41gj526mOnnjsPNM70T-_t_j9U37Uv7yC54L-Jzlcx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normal generation of locally compact groups</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Eisenmann, A. ; Monod, N.</creator><creatorcontrib>Eisenmann, A. ; Monod, N.</creatorcontrib><description>It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete quotients (which is probably a necessary restriction).</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bdt009</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2013-08, Vol.45 (4), p.734-738</ispartof><rights>2013 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3124-5af8a47d38347edd48f8417a70cf323f69e6c1649eac301faa5d25eaaee960393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbdt009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbdt009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Eisenmann, A.</creatorcontrib><creatorcontrib>Monod, N.</creatorcontrib><title>Normal generation of locally compact groups</title><title>The Bulletin of the London Mathematical Society</title><description>It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete quotients (which is probably a necessary restriction).</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9j71OwzAURi0EEqEw8QLZq9B7YyeOR6j4kwIMwGzdOnYV5NSRHYT69rQKM9O3HH1Hh7FrhBtELFcbP6TVppsA1AnLUNSqKLGEU5YBlKKoQfFzdpHSFwBykJix5WuIA_l8a3c20tSHXR5c7oMh7_e5CcNIZsq3MXyP6ZKdOfLJXv3tgn0-3H-sn4r27fF5fdsWhuPBUpFrSMiON1xI23WicY1ASRKM4yV3tbK1wVooS4YDOqKqKytLZK2qgSu-YMv518SQUrROj7EfKO41gj526mOnnjsPNM70T-_t_j9U37Uv7yC54L-Jzlcx</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Eisenmann, A.</creator><creator>Monod, N.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201308</creationdate><title>Normal generation of locally compact groups</title><author>Eisenmann, A. ; Monod, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3124-5af8a47d38347edd48f8417a70cf323f69e6c1649eac301faa5d25eaaee960393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenmann, A.</creatorcontrib><creatorcontrib>Monod, N.</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenmann, A.</au><au>Monod, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal generation of locally compact groups</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2013-08</date><risdate>2013</risdate><volume>45</volume><issue>4</issue><spage>734</spage><epage>738</epage><pages>734-738</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>It has been a well‐known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer for locally compact groups as long as we exclude infinite discrete quotients (which is probably a necessary restriction).</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bdt009</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2013-08, Vol.45 (4), p.734-738 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_bdt009 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
title | Normal generation of locally compact groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A16%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20generation%20of%20locally%20compact%20groups&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Eisenmann,%20A.&rft.date=2013-08&rft.volume=45&rft.issue=4&rft.spage=734&rft.epage=738&rft.pages=734-738&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bdt009&rft_dat=%3Cwiley_cross%3EBLMS0734%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |