Bounding the homological finiteness length

We give a criterion for bounding the homological finiteness length of certain H픉‐groups. This is used in two distinct contexts. First, the homological finiteness length of a non‐uniform lattice on a locally finite n‐dimensional contractible CW‐complex is less than n. In dimension 2, it solves a conj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2012-12, Vol.44 (6), p.1209-1214
1. Verfasser: Gandini, Giovanni
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1214
container_issue 6
container_start_page 1209
container_title The Bulletin of the London Mathematical Society
container_volume 44
creator Gandini, Giovanni
description We give a criterion for bounding the homological finiteness length of certain H픉‐groups. This is used in two distinct contexts. First, the homological finiteness length of a non‐uniform lattice on a locally finite n‐dimensional contractible CW‐complex is less than n. In dimension 2, it solves a conjecture of Farb, Hruska and Thomas. As another corollary, we obtain an upper bound for the homological finiteness length of arithmetic groups over function fields. This gives an easier proof of a result of Bux and Wortman that solved a long‐standing conjecture. Secondly, the criterion is applied to integer polynomial points of simple groups over number fields, obtaining bounds established in earlier works of Bux, Mohammadi and Wortman, as well as new bounds. Moreover, this verifies a conjecture of Mohammadi and Wortman.
doi_str_mv 10.1112/blms/bds047
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bds047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS1209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3129-17059c9d6c0603b43fa910acb91bad395a0909718ddc681d31971ac0589f1ac13</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEdX_oGulTrvNf16S2dwdKCDC3Ud0iRtI2krTUXm39uhrl1dLhwunMvYLcIDIsbrynV-XWkPSX7GAkwyimKM4ZwFAHESZUD8kl15_wmAHHIM2N1m-O617Ztwak3YDt3ghsYq6cLa9nYyvfE-dKZvpvaaXdTSeXPzlyv2sXt6375E5evzfvtYRopjTBHmkJIinSnIgFcJryUhSFURVlJzSiUQUI6F1iorUHOci1SQFlTPiXzF7pddNQ7ej6YWX6Pt5HgUCOKkKU6aYtGcaVzoH-vM8T9UbMrD2_wG8V_PPFYZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bounding the homological finiteness length</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Gandini, Giovanni</creator><creatorcontrib>Gandini, Giovanni</creatorcontrib><description>We give a criterion for bounding the homological finiteness length of certain H픉‐groups. This is used in two distinct contexts. First, the homological finiteness length of a non‐uniform lattice on a locally finite n‐dimensional contractible CW‐complex is less than n. In dimension 2, it solves a conjecture of Farb, Hruska and Thomas. As another corollary, we obtain an upper bound for the homological finiteness length of arithmetic groups over function fields. This gives an easier proof of a result of Bux and Wortman that solved a long‐standing conjecture. Secondly, the criterion is applied to integer polynomial points of simple groups over number fields, obtaining bounds established in earlier works of Bux, Mohammadi and Wortman, as well as new bounds. Moreover, this verifies a conjecture of Mohammadi and Wortman.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bds047</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2012-12, Vol.44 (6), p.1209-1214</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3129-17059c9d6c0603b43fa910acb91bad395a0909718ddc681d31971ac0589f1ac13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbds047$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbds047$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gandini, Giovanni</creatorcontrib><title>Bounding the homological finiteness length</title><title>The Bulletin of the London Mathematical Society</title><description>We give a criterion for bounding the homological finiteness length of certain H픉‐groups. This is used in two distinct contexts. First, the homological finiteness length of a non‐uniform lattice on a locally finite n‐dimensional contractible CW‐complex is less than n. In dimension 2, it solves a conjecture of Farb, Hruska and Thomas. As another corollary, we obtain an upper bound for the homological finiteness length of arithmetic groups over function fields. This gives an easier proof of a result of Bux and Wortman that solved a long‐standing conjecture. Secondly, the criterion is applied to integer polynomial points of simple groups over number fields, obtaining bounds established in earlier works of Bux, Mohammadi and Wortman, as well as new bounds. Moreover, this verifies a conjecture of Mohammadi and Wortman.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEdX_oGulTrvNf16S2dwdKCDC3Ud0iRtI2krTUXm39uhrl1dLhwunMvYLcIDIsbrynV-XWkPSX7GAkwyimKM4ZwFAHESZUD8kl15_wmAHHIM2N1m-O617Ztwak3YDt3ghsYq6cLa9nYyvfE-dKZvpvaaXdTSeXPzlyv2sXt6375E5evzfvtYRopjTBHmkJIinSnIgFcJryUhSFURVlJzSiUQUI6F1iorUHOci1SQFlTPiXzF7pddNQ7ej6YWX6Pt5HgUCOKkKU6aYtGcaVzoH-vM8T9UbMrD2_wG8V_PPFYZ</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Gandini, Giovanni</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201212</creationdate><title>Bounding the homological finiteness length</title><author>Gandini, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3129-17059c9d6c0603b43fa910acb91bad395a0909718ddc681d31971ac0589f1ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gandini, Giovanni</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gandini, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding the homological finiteness length</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2012-12</date><risdate>2012</risdate><volume>44</volume><issue>6</issue><spage>1209</spage><epage>1214</epage><pages>1209-1214</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We give a criterion for bounding the homological finiteness length of certain H픉‐groups. This is used in two distinct contexts. First, the homological finiteness length of a non‐uniform lattice on a locally finite n‐dimensional contractible CW‐complex is less than n. In dimension 2, it solves a conjecture of Farb, Hruska and Thomas. As another corollary, we obtain an upper bound for the homological finiteness length of arithmetic groups over function fields. This gives an easier proof of a result of Bux and Wortman that solved a long‐standing conjecture. Secondly, the criterion is applied to integer polynomial points of simple groups over number fields, obtaining bounds established in earlier works of Bux, Mohammadi and Wortman, as well as new bounds. Moreover, this verifies a conjecture of Mohammadi and Wortman.</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bds047</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2012-12, Vol.44 (6), p.1209-1214
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_bds047
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title Bounding the homological finiteness length
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20the%20homological%20finiteness%20length&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Gandini,%20Giovanni&rft.date=2012-12&rft.volume=44&rft.issue=6&rft.spage=1209&rft.epage=1214&rft.pages=1209-1214&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bds047&rft_dat=%3Cwiley_cross%3EBLMS1209%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true