Primes whose sum of digits is prime and metric number theory

It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Riva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2012-10, Vol.44 (5), p.1042-1049
1. Verfasser: Harman, Glyn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049
container_issue 5
container_start_page 1042
container_title The Bulletin of the London Mathematical Society
container_volume 44
creator Harman, Glyn
description It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Rivat on primes with prescribed sum of digits.
doi_str_mv 10.1112/blms/bds034
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bds034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS1042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2332-1f37e924350b9fb032ca0eb696fd59deaee59f4e59e93e336180c4280507a9d33</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFdP_oHcpe5MJm034EUXv6CioJ5L007cSruVpMvSf--WevYy72EeXt5HiEuEa0RUS9t2YWnrAKSPRIQ6NbFCBcciAlA6TsHQqTgL4RsACTKMxM2bbzoOcr_pA8uw62TvZN18NUOQTZA_01eW21p2PPimkttdZ9nLYcO9H8_FiSvbwBd_uRCfD_cf66c4f318Xt_mcaWIVIyOMjZKUwLWOAukqhLYpiZ1dWJqLpkT4_ThsCEmSnEFlVYrSCArTU20EFdzb-X7EDy7YtpV-rFAKCbxYhIvZvEDjTO9b1oe_0OLu_zlHUEr-gX-W1x9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Primes whose sum of digits is prime and metric number theory</title><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Harman, Glyn</creator><creatorcontrib>Harman, Glyn</creatorcontrib><description>It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Rivat on primes with prescribed sum of digits.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bds034</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2012-10, Vol.44 (5), p.1042-1049</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbds034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbds034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Harman, Glyn</creatorcontrib><title>Primes whose sum of digits is prime and metric number theory</title><title>The Bulletin of the London Mathematical Society</title><description>It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Rivat on primes with prescribed sum of digits.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFdP_oHcpe5MJm034EUXv6CioJ5L007cSruVpMvSf--WevYy72EeXt5HiEuEa0RUS9t2YWnrAKSPRIQ6NbFCBcciAlA6TsHQqTgL4RsACTKMxM2bbzoOcr_pA8uw62TvZN18NUOQTZA_01eW21p2PPimkttdZ9nLYcO9H8_FiSvbwBd_uRCfD_cf66c4f318Xt_mcaWIVIyOMjZKUwLWOAukqhLYpiZ1dWJqLpkT4_ThsCEmSnEFlVYrSCArTU20EFdzb-X7EDy7YtpV-rFAKCbxYhIvZvEDjTO9b1oe_0OLu_zlHUEr-gX-W1x9</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Harman, Glyn</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201210</creationdate><title>Primes whose sum of digits is prime and metric number theory</title><author>Harman, Glyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2332-1f37e924350b9fb032ca0eb696fd59deaee59f4e59e93e336180c4280507a9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harman, Glyn</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harman, Glyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primes whose sum of digits is prime and metric number theory</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2012-10</date><risdate>2012</risdate><volume>44</volume><issue>5</issue><spage>1042</spage><epage>1049</epage><pages>1042-1049</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Rivat on primes with prescribed sum of digits.</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bds034</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2012-10, Vol.44 (5), p.1042-1049
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_bds034
source Wiley Online Library Journals; Alma/SFX Local Collection
title Primes whose sum of digits is prime and metric number theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primes%20whose%20sum%20of%20digits%20is%20prime%20and%20metric%20number%20theory&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Harman,%20Glyn&rft.date=2012-10&rft.volume=44&rft.issue=5&rft.spage=1042&rft.epage=1049&rft.pages=1042-1049&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bds034&rft_dat=%3Cwiley_cross%3EBLMS1042%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true