Primes whose sum of digits is prime and metric number theory
It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Riva...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2012-10, Vol.44 (5), p.1042-1049 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1049 |
---|---|
container_issue | 5 |
container_start_page | 1042 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 44 |
creator | Harman, Glyn |
description | It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Rivat on primes with prescribed sum of digits. |
doi_str_mv | 10.1112/blms/bds034 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_bds034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS1042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2332-1f37e924350b9fb032ca0eb696fd59deaee59f4e59e93e336180c4280507a9d33</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFdP_oHcpe5MJm034EUXv6CioJ5L007cSruVpMvSf--WevYy72EeXt5HiEuEa0RUS9t2YWnrAKSPRIQ6NbFCBcciAlA6TsHQqTgL4RsACTKMxM2bbzoOcr_pA8uw62TvZN18NUOQTZA_01eW21p2PPimkttdZ9nLYcO9H8_FiSvbwBd_uRCfD_cf66c4f318Xt_mcaWIVIyOMjZKUwLWOAukqhLYpiZ1dWJqLpkT4_ThsCEmSnEFlVYrSCArTU20EFdzb-X7EDy7YtpV-rFAKCbxYhIvZvEDjTO9b1oe_0OLu_zlHUEr-gX-W1x9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Primes whose sum of digits is prime and metric number theory</title><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Harman, Glyn</creator><creatorcontrib>Harman, Glyn</creatorcontrib><description>It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Rivat on primes with prescribed sum of digits.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms/bds034</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2012-10, Vol.44 (5), p.1042-1049</ispartof><rights>2012 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms%2Fbds034$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms%2Fbds034$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Harman, Glyn</creatorcontrib><title>Primes whose sum of digits is prime and metric number theory</title><title>The Bulletin of the London Mathematical Society</title><description>It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Rivat on primes with prescribed sum of digits.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAQhoMoWFdP_oHcpe5MJm034EUXv6CioJ5L007cSruVpMvSf--WevYy72EeXt5HiEuEa0RUS9t2YWnrAKSPRIQ6NbFCBcciAlA6TsHQqTgL4RsACTKMxM2bbzoOcr_pA8uw62TvZN18NUOQTZA_01eW21p2PPimkttdZ9nLYcO9H8_FiSvbwBd_uRCfD_cf66c4f318Xt_mcaWIVIyOMjZKUwLWOAukqhLYpiZ1dWJqLpkT4_ThsCEmSnEFlVYrSCArTU20EFdzb-X7EDy7YtpV-rFAKCbxYhIvZvEDjTO9b1oe_0OLu_zlHUEr-gX-W1x9</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Harman, Glyn</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201210</creationdate><title>Primes whose sum of digits is prime and metric number theory</title><author>Harman, Glyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2332-1f37e924350b9fb032ca0eb696fd59deaee59f4e59e93e336180c4280507a9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harman, Glyn</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harman, Glyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primes whose sum of digits is prime and metric number theory</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2012-10</date><risdate>2012</risdate><volume>44</volume><issue>5</issue><spage>1042</spage><epage>1049</epage><pages>1042-1049</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>It is shown that almost all real x contain infinitely many primes in their decimal expansions (to any base) whose sum of digits is also prime, generalizing a previous result by the author. To do this, the earlier method in metric number theory is combined with recent work by Drmota, Mauduit and Rivat on primes with prescribed sum of digits.</abstract><pub>Oxford University Press</pub><doi>10.1112/blms/bds034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2012-10, Vol.44 (5), p.1042-1049 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_bds034 |
source | Wiley Online Library Journals; Alma/SFX Local Collection |
title | Primes whose sum of digits is prime and metric number theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primes%20whose%20sum%20of%20digits%20is%20prime%20and%20metric%20number%20theory&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Harman,%20Glyn&rft.date=2012-10&rft.volume=44&rft.issue=5&rft.spage=1042&rft.epage=1049&rft.pages=1042-1049&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms/bds034&rft_dat=%3Cwiley_cross%3EBLMS1042%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |