Galois invariants of finite abelian descent and Brauer sets
For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this pa...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2024-10, Vol.56 (10), p.3240-3256 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3256 |
---|---|
container_issue | 10 |
container_start_page | 3240 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 56 |
creator | Creutz, Brendan Pajwani, Jesse Voloch, José Felipe |
description | For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case. |
doi_str_mv | 10.1112/blms.13130 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_13130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS13130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1980-86dfba91c54e90c53e6fdea9d19bccd1a03f8cccd0355a742f77ccdf89305d693</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFcv_oKcha4zTb-CJ3fRVah4UM9lmkwg0u1KUpX993atZ0_zwfO-8AhxibBExOy667dxiQoVHIkE81KnGWZwLBKALE9L0OpUnMX4DjAhFSbiZkP9zkfphy8KnoYxyp2Tzg9-ZEkd99NPWo6Gh1HSYOUq0CcHGXmM5-LEUR_54m8uxNv93ev6IW2eN4_r2yY1qGtI69K6jjSaImcNplBcOsukLerOGIsEytVm2kAVBVV55qpqulytFRS21GohruZeE3YxBnbtR_BbCvsWoT1otwft9ld7gnGGv33P-3_IdtU8vcyZH78ZWxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Galois invariants of finite abelian descent and Brauer sets</title><source>Wiley Online Library All Journals</source><creator>Creutz, Brendan ; Pajwani, Jesse ; Voloch, José Felipe</creator><creatorcontrib>Creutz, Brendan ; Pajwani, Jesse ; Voloch, José Felipe</creatorcontrib><description>For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.13130</identifier><language>eng</language><ispartof>The Bulletin of the London Mathematical Society, 2024-10, Vol.56 (10), p.3240-3256</ispartof><rights>2024 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1980-86dfba91c54e90c53e6fdea9d19bccd1a03f8cccd0355a742f77ccdf89305d693</cites><orcidid>0000-0003-1669-9306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.13130$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.13130$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Creutz, Brendan</creatorcontrib><creatorcontrib>Pajwani, Jesse</creatorcontrib><creatorcontrib>Voloch, José Felipe</creatorcontrib><title>Galois invariants of finite abelian descent and Brauer sets</title><title>The Bulletin of the London Mathematical Society</title><description>For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9j01LxDAQhoMoWFcv_oKcha4zTb-CJ3fRVah4UM9lmkwg0u1KUpX993atZ0_zwfO-8AhxibBExOy667dxiQoVHIkE81KnGWZwLBKALE9L0OpUnMX4DjAhFSbiZkP9zkfphy8KnoYxyp2Tzg9-ZEkd99NPWo6Gh1HSYOUq0CcHGXmM5-LEUR_54m8uxNv93ev6IW2eN4_r2yY1qGtI69K6jjSaImcNplBcOsukLerOGIsEytVm2kAVBVV55qpqulytFRS21GohruZeE3YxBnbtR_BbCvsWoT1otwft9ld7gnGGv33P-3_IdtU8vcyZH78ZWxc</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Creutz, Brendan</creator><creator>Pajwani, Jesse</creator><creator>Voloch, José Felipe</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1669-9306</orcidid></search><sort><creationdate>202410</creationdate><title>Galois invariants of finite abelian descent and Brauer sets</title><author>Creutz, Brendan ; Pajwani, Jesse ; Voloch, José Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1980-86dfba91c54e90c53e6fdea9d19bccd1a03f8cccd0355a742f77ccdf89305d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creutz, Brendan</creatorcontrib><creatorcontrib>Pajwani, Jesse</creatorcontrib><creatorcontrib>Voloch, José Felipe</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creutz, Brendan</au><au>Pajwani, Jesse</au><au>Voloch, José Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galois invariants of finite abelian descent and Brauer sets</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2024-10</date><risdate>2024</risdate><volume>56</volume><issue>10</issue><spage>3240</spage><epage>3256</epage><pages>3240-3256</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.</abstract><doi>10.1112/blms.13130</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1669-9306</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2024-10, Vol.56 (10), p.3240-3256 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_13130 |
source | Wiley Online Library All Journals |
title | Galois invariants of finite abelian descent and Brauer sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galois%20invariants%20of%20finite%20abelian%20descent%20and%20Brauer%20sets&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Creutz,%20Brendan&rft.date=2024-10&rft.volume=56&rft.issue=10&rft.spage=3240&rft.epage=3256&rft.pages=3240-3256&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.13130&rft_dat=%3Cwiley_cross%3EBLMS13130%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |