Galois invariants of finite abelian descent and Brauer sets

For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2024-10, Vol.56 (10), p.3240-3256
Hauptverfasser: Creutz, Brendan, Pajwani, Jesse, Voloch, José Felipe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3256
container_issue 10
container_start_page 3240
container_title The Bulletin of the London Mathematical Society
container_volume 56
creator Creutz, Brendan
Pajwani, Jesse
Voloch, José Felipe
description For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.
doi_str_mv 10.1112/blms.13130
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_13130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS13130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1980-86dfba91c54e90c53e6fdea9d19bccd1a03f8cccd0355a742f77ccdf89305d693</originalsourceid><addsrcrecordid>eNp9j01LxDAQhoMoWFcv_oKcha4zTb-CJ3fRVah4UM9lmkwg0u1KUpX993atZ0_zwfO-8AhxibBExOy667dxiQoVHIkE81KnGWZwLBKALE9L0OpUnMX4DjAhFSbiZkP9zkfphy8KnoYxyp2Tzg9-ZEkd99NPWo6Gh1HSYOUq0CcHGXmM5-LEUR_54m8uxNv93ev6IW2eN4_r2yY1qGtI69K6jjSaImcNplBcOsukLerOGIsEytVm2kAVBVV55qpqulytFRS21GohruZeE3YxBnbtR_BbCvsWoT1otwft9ld7gnGGv33P-3_IdtU8vcyZH78ZWxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Galois invariants of finite abelian descent and Brauer sets</title><source>Wiley Online Library All Journals</source><creator>Creutz, Brendan ; Pajwani, Jesse ; Voloch, José Felipe</creator><creatorcontrib>Creutz, Brendan ; Pajwani, Jesse ; Voloch, José Felipe</creatorcontrib><description>For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.13130</identifier><language>eng</language><ispartof>The Bulletin of the London Mathematical Society, 2024-10, Vol.56 (10), p.3240-3256</ispartof><rights>2024 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1980-86dfba91c54e90c53e6fdea9d19bccd1a03f8cccd0355a742f77ccdf89305d693</cites><orcidid>0000-0003-1669-9306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.13130$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.13130$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Creutz, Brendan</creatorcontrib><creatorcontrib>Pajwani, Jesse</creatorcontrib><creatorcontrib>Voloch, José Felipe</creatorcontrib><title>Galois invariants of finite abelian descent and Brauer sets</title><title>The Bulletin of the London Mathematical Society</title><description>For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9j01LxDAQhoMoWFcv_oKcha4zTb-CJ3fRVah4UM9lmkwg0u1KUpX993atZ0_zwfO-8AhxibBExOy667dxiQoVHIkE81KnGWZwLBKALE9L0OpUnMX4DjAhFSbiZkP9zkfphy8KnoYxyp2Tzg9-ZEkd99NPWo6Gh1HSYOUq0CcHGXmM5-LEUR_54m8uxNv93ev6IW2eN4_r2yY1qGtI69K6jjSaImcNplBcOsukLerOGIsEytVm2kAVBVV55qpqulytFRS21GohruZeE3YxBnbtR_BbCvsWoT1otwft9ld7gnGGv33P-3_IdtU8vcyZH78ZWxc</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Creutz, Brendan</creator><creator>Pajwani, Jesse</creator><creator>Voloch, José Felipe</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1669-9306</orcidid></search><sort><creationdate>202410</creationdate><title>Galois invariants of finite abelian descent and Brauer sets</title><author>Creutz, Brendan ; Pajwani, Jesse ; Voloch, José Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1980-86dfba91c54e90c53e6fdea9d19bccd1a03f8cccd0355a742f77ccdf89305d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creutz, Brendan</creatorcontrib><creatorcontrib>Pajwani, Jesse</creatorcontrib><creatorcontrib>Voloch, José Felipe</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creutz, Brendan</au><au>Pajwani, Jesse</au><au>Voloch, José Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galois invariants of finite abelian descent and Brauer sets</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2024-10</date><risdate>2024</risdate><volume>56</volume><issue>10</issue><spage>3240</spage><epage>3256</epage><pages>3240-3256</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.</abstract><doi>10.1112/blms.13130</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1669-9306</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2024-10, Vol.56 (10), p.3240-3256
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_13130
source Wiley Online Library All Journals
title Galois invariants of finite abelian descent and Brauer sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galois%20invariants%20of%20finite%20abelian%20descent%20and%20Brauer%20sets&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Creutz,%20Brendan&rft.date=2024-10&rft.volume=56&rft.issue=10&rft.spage=3240&rft.epage=3256&rft.pages=3240-3256&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.13130&rft_dat=%3Cwiley_cross%3EBLMS13130%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true