Infinite pinning

In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2022-04, Vol.54 (2), p.760-771
Hauptverfasser: Dondl, Patrick, Jesenko, Martin, Scheutzow, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 2
container_start_page 760
container_title The Bulletin of the London Mathematical Society
container_volume 54
creator Dondl, Patrick
Jesenko, Martin
Scheutzow, Michael
description In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned.
doi_str_mv 10.1112/blms.12599
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1629-db37d5bd37f25b47062434d9d38259e2d1f03cbde936a5a24c6d494248a6d1f23</originalsourceid><addsrcrecordid>eNp9j01LAzEURYMoOFZB_AWuhdT3XjKZZqnFj8KULtR1SCaJRKaxTATpv3fquHb1Fvfc-ziMXSHMEZFuXb8tc6Ra6yNWoVSaExIcswqAJFegxSk7K-UDAAU0WLHLVY4pp69wvUs5p_x-zk6i7Uu4-Lsz9vb48Lp85u3mabW8a3mHijT3TjS-dl40kWonG1AkhfTai8X4PZDHCKJzPmihbG1JdspLLUkurBozEjN2M-12w2cpQ4hmN6StHfYGwRxczMHF_LqMME7wd-rD_h_S3Lfrl6nzA2fISic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infinite pinning</title><source>Access via Wiley Online Library</source><creator>Dondl, Patrick ; Jesenko, Martin ; Scheutzow, Michael</creator><creatorcontrib>Dondl, Patrick ; Jesenko, Martin ; Scheutzow, Michael</creatorcontrib><description>In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12599</identifier><language>eng</language><ispartof>The Bulletin of the London Mathematical Society, 2022-04, Vol.54 (2), p.760-771</ispartof><rights>2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1629-db37d5bd37f25b47062434d9d38259e2d1f03cbde936a5a24c6d494248a6d1f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12599$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12599$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Dondl, Patrick</creatorcontrib><creatorcontrib>Jesenko, Martin</creatorcontrib><creatorcontrib>Scheutzow, Michael</creatorcontrib><title>Infinite pinning</title><title>The Bulletin of the London Mathematical Society</title><description>In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEURYMoOFZB_AWuhdT3XjKZZqnFj8KULtR1SCaJRKaxTATpv3fquHb1Fvfc-ziMXSHMEZFuXb8tc6Ra6yNWoVSaExIcswqAJFegxSk7K-UDAAU0WLHLVY4pp69wvUs5p_x-zk6i7Uu4-Lsz9vb48Lp85u3mabW8a3mHijT3TjS-dl40kWonG1AkhfTai8X4PZDHCKJzPmihbG1JdspLLUkurBozEjN2M-12w2cpQ4hmN6StHfYGwRxczMHF_LqMME7wd-rD_h_S3Lfrl6nzA2fISic</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Dondl, Patrick</creator><creator>Jesenko, Martin</creator><creator>Scheutzow, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202204</creationdate><title>Infinite pinning</title><author>Dondl, Patrick ; Jesenko, Martin ; Scheutzow, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1629-db37d5bd37f25b47062434d9d38259e2d1f03cbde936a5a24c6d494248a6d1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dondl, Patrick</creatorcontrib><creatorcontrib>Jesenko, Martin</creatorcontrib><creatorcontrib>Scheutzow, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dondl, Patrick</au><au>Jesenko, Martin</au><au>Scheutzow, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite pinning</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2022-04</date><risdate>2022</risdate><volume>54</volume><issue>2</issue><spage>760</spage><epage>771</epage><pages>760-771</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned.</abstract><doi>10.1112/blms.12599</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2022-04, Vol.54 (2), p.760-771
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_12599
source Access via Wiley Online Library
title Infinite pinning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20pinning&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Dondl,%20Patrick&rft.date=2022-04&rft.volume=54&rft.issue=2&rft.spage=760&rft.epage=771&rft.pages=760-771&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12599&rft_dat=%3Cwiley_cross%3EBLMS12599%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true