Infinite pinning
In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2022-04, Vol.54 (2), p.760-771 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 771 |
---|---|
container_issue | 2 |
container_start_page | 760 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 54 |
creator | Dondl, Patrick Jesenko, Martin Scheutzow, Michael |
description | In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned. |
doi_str_mv | 10.1112/blms.12599 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1629-db37d5bd37f25b47062434d9d38259e2d1f03cbde936a5a24c6d494248a6d1f23</originalsourceid><addsrcrecordid>eNp9j01LAzEURYMoOFZB_AWuhdT3XjKZZqnFj8KULtR1SCaJRKaxTATpv3fquHb1Fvfc-ziMXSHMEZFuXb8tc6Ra6yNWoVSaExIcswqAJFegxSk7K-UDAAU0WLHLVY4pp69wvUs5p_x-zk6i7Uu4-Lsz9vb48Lp85u3mabW8a3mHijT3TjS-dl40kWonG1AkhfTai8X4PZDHCKJzPmihbG1JdspLLUkurBozEjN2M-12w2cpQ4hmN6StHfYGwRxczMHF_LqMME7wd-rD_h_S3Lfrl6nzA2fISic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infinite pinning</title><source>Access via Wiley Online Library</source><creator>Dondl, Patrick ; Jesenko, Martin ; Scheutzow, Michael</creator><creatorcontrib>Dondl, Patrick ; Jesenko, Martin ; Scheutzow, Michael</creatorcontrib><description>In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12599</identifier><language>eng</language><ispartof>The Bulletin of the London Mathematical Society, 2022-04, Vol.54 (2), p.760-771</ispartof><rights>2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1629-db37d5bd37f25b47062434d9d38259e2d1f03cbde936a5a24c6d494248a6d1f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12599$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12599$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Dondl, Patrick</creatorcontrib><creatorcontrib>Jesenko, Martin</creatorcontrib><creatorcontrib>Scheutzow, Michael</creatorcontrib><title>Infinite pinning</title><title>The Bulletin of the London Mathematical Society</title><description>In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEURYMoOFZB_AWuhdT3XjKZZqnFj8KULtR1SCaJRKaxTATpv3fquHb1Fvfc-ziMXSHMEZFuXb8tc6Ra6yNWoVSaExIcswqAJFegxSk7K-UDAAU0WLHLVY4pp69wvUs5p_x-zk6i7Uu4-Lsz9vb48Lp85u3mabW8a3mHijT3TjS-dl40kWonG1AkhfTai8X4PZDHCKJzPmihbG1JdspLLUkurBozEjN2M-12w2cpQ4hmN6StHfYGwRxczMHF_LqMME7wd-rD_h_S3Lfrl6nzA2fISic</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Dondl, Patrick</creator><creator>Jesenko, Martin</creator><creator>Scheutzow, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202204</creationdate><title>Infinite pinning</title><author>Dondl, Patrick ; Jesenko, Martin ; Scheutzow, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1629-db37d5bd37f25b47062434d9d38259e2d1f03cbde936a5a24c6d494248a6d1f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dondl, Patrick</creatorcontrib><creatorcontrib>Jesenko, Martin</creatorcontrib><creatorcontrib>Scheutzow, Michael</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dondl, Patrick</au><au>Jesenko, Martin</au><au>Scheutzow, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite pinning</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2022-04</date><risdate>2022</risdate><volume>54</volume><issue>2</issue><spage>760</spage><epage>771</epage><pages>760-771</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>In this work, we address the occurrence of infinite pinning in a random medium. We suppose that an initially flat interface starts to move through the medium due to some constant driving force. The medium is assumed to contain random obstacles. We model their positions by a Poisson point process and their strengths are not bounded. We determine a necessary condition on its distribution so that regardless of the driving force the interface gets pinned.</abstract><doi>10.1112/blms.12599</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2022-04, Vol.54 (2), p.760-771 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_12599 |
source | Access via Wiley Online Library |
title | Infinite pinning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20pinning&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Dondl,%20Patrick&rft.date=2022-04&rft.volume=54&rft.issue=2&rft.spage=760&rft.epage=771&rft.pages=760-771&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12599&rft_dat=%3Cwiley_cross%3EBLMS12599%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |