Independence polynomials and hypergeometric series
Let Γ be a simple graph and IΓ(x) its multivariate independence polynomial. The main result of this paper is the characterization of chordal graphs as the only Γ for which the power series expansion of IΓ−1(x) is Horn hypergeometric.
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2021-12, Vol.53 (6), p.1834-1848 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1848 |
---|---|
container_issue | 6 |
container_start_page | 1834 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 53 |
creator | Radchenko, Danylo Rodriguez Villegas, Fernando |
description | Let Γ be a simple graph and IΓ(x) its multivariate independence polynomial. The main result of this paper is the characterization of chordal graphs as the only Γ for which the power series expansion of IΓ−1(x) is Horn hypergeometric. |
doi_str_mv | 10.1112/blms.12545 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2685-9e617d33a6f599895614759b09ade7307d975b89dd886bf4faeac2f4b03e04b73</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoWEc3_oKuhY65ebVZ6uBjoOJCXYekudFKXySC9N_bsa7d3LP5zrl8hFwC3QIAu3Zdn7bApJBHJAOhdMGA0WOSUcpEoajmp-QspU9KgdMSMsL2g8cJlzM0mE9jNw9j39ou5Xbw-cc8YXzHscev2DZ5wthiOicnYQHw4i835O3-7nX3WNTPD_vdTV00TFWy0Kig9JxbFaTWlZYKRCm1o9p6LJfvXpfSVdr7qlIuiGDRNiwIRzlS4Uq-IVfrbhPHlCIGM8W2t3E2QM3B1hxsza_tAsMKf7cdzv-Q5rZ-elk7PyZtV6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Independence polynomials and hypergeometric series</title><source>Wiley Journals</source><creator>Radchenko, Danylo ; Rodriguez Villegas, Fernando</creator><creatorcontrib>Radchenko, Danylo ; Rodriguez Villegas, Fernando</creatorcontrib><description>Let Γ be a simple graph and IΓ(x) its multivariate independence polynomial. The main result of this paper is the characterization of chordal graphs as the only Γ for which the power series expansion of IΓ−1(x) is Horn hypergeometric.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12545</identifier><language>eng</language><subject>33C70 ; 97K30 (primary)</subject><ispartof>The Bulletin of the London Mathematical Society, 2021-12, Vol.53 (6), p.1834-1848</ispartof><rights>2021 The Authors. is copyright © London Mathematical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2685-9e617d33a6f599895614759b09ade7307d975b89dd886bf4faeac2f4b03e04b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12545$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12545$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Radchenko, Danylo</creatorcontrib><creatorcontrib>Rodriguez Villegas, Fernando</creatorcontrib><title>Independence polynomials and hypergeometric series</title><title>The Bulletin of the London Mathematical Society</title><description>Let Γ be a simple graph and IΓ(x) its multivariate independence polynomial. The main result of this paper is the characterization of chordal graphs as the only Γ for which the power series expansion of IΓ−1(x) is Horn hypergeometric.</description><subject>33C70</subject><subject>97K30 (primary)</subject><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9j0tLxDAUhYMoWEc3_oKuhY65ebVZ6uBjoOJCXYekudFKXySC9N_bsa7d3LP5zrl8hFwC3QIAu3Zdn7bApJBHJAOhdMGA0WOSUcpEoajmp-QspU9KgdMSMsL2g8cJlzM0mE9jNw9j39ou5Xbw-cc8YXzHscev2DZ5wthiOicnYQHw4i835O3-7nX3WNTPD_vdTV00TFWy0Kig9JxbFaTWlZYKRCm1o9p6LJfvXpfSVdr7qlIuiGDRNiwIRzlS4Uq-IVfrbhPHlCIGM8W2t3E2QM3B1hxsza_tAsMKf7cdzv-Q5rZ-elk7PyZtV6g</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Radchenko, Danylo</creator><creator>Rodriguez Villegas, Fernando</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202112</creationdate><title>Independence polynomials and hypergeometric series</title><author>Radchenko, Danylo ; Rodriguez Villegas, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2685-9e617d33a6f599895614759b09ade7307d975b89dd886bf4faeac2f4b03e04b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>33C70</topic><topic>97K30 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radchenko, Danylo</creatorcontrib><creatorcontrib>Rodriguez Villegas, Fernando</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radchenko, Danylo</au><au>Rodriguez Villegas, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independence polynomials and hypergeometric series</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2021-12</date><risdate>2021</risdate><volume>53</volume><issue>6</issue><spage>1834</spage><epage>1848</epage><pages>1834-1848</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>Let Γ be a simple graph and IΓ(x) its multivariate independence polynomial. The main result of this paper is the characterization of chordal graphs as the only Γ for which the power series expansion of IΓ−1(x) is Horn hypergeometric.</abstract><doi>10.1112/blms.12545</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2021-12, Vol.53 (6), p.1834-1848 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_12545 |
source | Wiley Journals |
subjects | 33C70 97K30 (primary) |
title | Independence polynomials and hypergeometric series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independence%20polynomials%20and%20hypergeometric%20series&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Radchenko,%20Danylo&rft.date=2021-12&rft.volume=53&rft.issue=6&rft.spage=1834&rft.epage=1848&rft.pages=1834-1848&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12545&rft_dat=%3Cwiley_cross%3EBLMS12545%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |