Torsional rigidity for cylinders with a Brownian fracture

We obtain bounds for the expected loss of torsional rigidity of a cylinder CL of length L and planar cross‐section Ω due to a Brownian fracture that starts at a random point in CL and runs until the first time it exits CL. These bounds are expressed in terms of the geometry of the cross‐section Ω⊂R2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2018-04, Vol.50 (2), p.321-339
Hauptverfasser: Berg, Michiel van den, den Hollander, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 2
container_start_page 321
container_title The Bulletin of the London Mathematical Society
container_volume 50
creator Berg, Michiel van den
den Hollander, Frank
description We obtain bounds for the expected loss of torsional rigidity of a cylinder CL of length L and planar cross‐section Ω due to a Brownian fracture that starts at a random point in CL and runs until the first time it exits CL. These bounds are expressed in terms of the geometry of the cross‐section Ω⊂R2. It is shown that if Ω is a disc with radius R, then in the limit as L→∞ the expected loss of torsional rigidity equals cR5 for some c∈(0,∞). We derive bounds for c in terms of the expected Newtonian capacity of the trace of a Brownian path that starts at the centre of a ball in R3 with radius 1, and runs until the first time it exits this ball.
doi_str_mv 10.1112/blms.12138
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3098-9a4614687518fe28ae7ff9caf43c959f7db81b15977ad6f602582b8855b451983</originalsourceid><addsrcrecordid>eNp9jzFPwzAYRC0EEqGw8As8I6X4s-PYHmkFpVIqBspsOY4NRmmC7KAo_56WMDPd8u50D6FbIEsAoPd1e0hLoMDkGcqgKFVOgZJzlBFCi7wkil2iq5Q-CQFGBGRI7fuYQt-ZFsfwHpowTNj3EdupDV3jYsJjGD6wwavYj10wHfbR2OE7umt04U2b3M1fLtDb0-N-_ZxXL5vt-qHKLSNK5soU5fGIFBykd1QaJ7xX1viCWcWVF00toQauhDBN6UtCuaS1lJzXBQcl2QLdzbs29ilF5_VXDAcTJw1En6T1SVr_Sh9hmOExtG76h9Sravc6d34Ak7tZUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Torsional rigidity for cylinders with a Brownian fracture</title><source>Wiley Journals</source><creator>Berg, Michiel van den ; den Hollander, Frank</creator><creatorcontrib>Berg, Michiel van den ; den Hollander, Frank</creatorcontrib><description>We obtain bounds for the expected loss of torsional rigidity of a cylinder CL of length L and planar cross‐section Ω due to a Brownian fracture that starts at a random point in CL and runs until the first time it exits CL. These bounds are expressed in terms of the geometry of the cross‐section Ω⊂R2. It is shown that if Ω is a disc with radius R, then in the limit as L→∞ the expected loss of torsional rigidity equals cR5 for some c∈(0,∞). We derive bounds for c in terms of the expected Newtonian capacity of the trace of a Brownian path that starts at the centre of a ball in R3 with radius 1, and runs until the first time it exits this ball.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12138</identifier><language>eng</language><subject>35J20 (primary) ; 60G50 (secondary)</subject><ispartof>The Bulletin of the London Mathematical Society, 2018-04, Vol.50 (2), p.321-339</ispartof><rights>2018 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3098-9a4614687518fe28ae7ff9caf43c959f7db81b15977ad6f602582b8855b451983</citedby><cites>FETCH-LOGICAL-c3098-9a4614687518fe28ae7ff9caf43c959f7db81b15977ad6f602582b8855b451983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Berg, Michiel van den</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><title>Torsional rigidity for cylinders with a Brownian fracture</title><title>The Bulletin of the London Mathematical Society</title><description>We obtain bounds for the expected loss of torsional rigidity of a cylinder CL of length L and planar cross‐section Ω due to a Brownian fracture that starts at a random point in CL and runs until the first time it exits CL. These bounds are expressed in terms of the geometry of the cross‐section Ω⊂R2. It is shown that if Ω is a disc with radius R, then in the limit as L→∞ the expected loss of torsional rigidity equals cR5 for some c∈(0,∞). We derive bounds for c in terms of the expected Newtonian capacity of the trace of a Brownian path that starts at the centre of a ball in R3 with radius 1, and runs until the first time it exits this ball.</description><subject>35J20 (primary)</subject><subject>60G50 (secondary)</subject><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9jzFPwzAYRC0EEqGw8As8I6X4s-PYHmkFpVIqBspsOY4NRmmC7KAo_56WMDPd8u50D6FbIEsAoPd1e0hLoMDkGcqgKFVOgZJzlBFCi7wkil2iq5Q-CQFGBGRI7fuYQt-ZFsfwHpowTNj3EdupDV3jYsJjGD6wwavYj10wHfbR2OE7umt04U2b3M1fLtDb0-N-_ZxXL5vt-qHKLSNK5soU5fGIFBykd1QaJ7xX1viCWcWVF00toQauhDBN6UtCuaS1lJzXBQcl2QLdzbs29ilF5_VXDAcTJw1En6T1SVr_Sh9hmOExtG76h9Sravc6d34Ak7tZUA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Berg, Michiel van den</creator><creator>den Hollander, Frank</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201804</creationdate><title>Torsional rigidity for cylinders with a Brownian fracture</title><author>Berg, Michiel van den ; den Hollander, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3098-9a4614687518fe28ae7ff9caf43c959f7db81b15977ad6f602582b8855b451983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35J20 (primary)</topic><topic>60G50 (secondary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg, Michiel van den</creatorcontrib><creatorcontrib>den Hollander, Frank</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berg, Michiel van den</au><au>den Hollander, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Torsional rigidity for cylinders with a Brownian fracture</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2018-04</date><risdate>2018</risdate><volume>50</volume><issue>2</issue><spage>321</spage><epage>339</epage><pages>321-339</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We obtain bounds for the expected loss of torsional rigidity of a cylinder CL of length L and planar cross‐section Ω due to a Brownian fracture that starts at a random point in CL and runs until the first time it exits CL. These bounds are expressed in terms of the geometry of the cross‐section Ω⊂R2. It is shown that if Ω is a disc with radius R, then in the limit as L→∞ the expected loss of torsional rigidity equals cR5 for some c∈(0,∞). We derive bounds for c in terms of the expected Newtonian capacity of the trace of a Brownian path that starts at the centre of a ball in R3 with radius 1, and runs until the first time it exits this ball.</abstract><doi>10.1112/blms.12138</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2018-04, Vol.50 (2), p.321-339
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_12138
source Wiley Journals
subjects 35J20 (primary)
60G50 (secondary)
title Torsional rigidity for cylinders with a Brownian fracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Torsional%20rigidity%20for%20cylinders%20with%20a%20Brownian%20fracture&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Berg,%20Michiel%20van%20den&rft.date=2018-04&rft.volume=50&rft.issue=2&rft.spage=321&rft.epage=339&rft.pages=321-339&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12138&rft_dat=%3Cwiley_cross%3EBLMS12138%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true