Torsional rigidity for cylinders with a Brownian fracture

We obtain bounds for the expected loss of torsional rigidity of a cylinder CL of length L and planar cross‐section Ω due to a Brownian fracture that starts at a random point in CL and runs until the first time it exits CL. These bounds are expressed in terms of the geometry of the cross‐section Ω⊂R2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2018-04, Vol.50 (2), p.321-339
Hauptverfasser: Berg, Michiel van den, den Hollander, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain bounds for the expected loss of torsional rigidity of a cylinder CL of length L and planar cross‐section Ω due to a Brownian fracture that starts at a random point in CL and runs until the first time it exits CL. These bounds are expressed in terms of the geometry of the cross‐section Ω⊂R2. It is shown that if Ω is a disc with radius R, then in the limit as L→∞ the expected loss of torsional rigidity equals cR5 for some c∈(0,∞). We derive bounds for c in terms of the expected Newtonian capacity of the trace of a Brownian path that starts at the centre of a ball in R3 with radius 1, and runs until the first time it exits this ball.
ISSN:0024-6093
1469-2120
DOI:10.1112/blms.12138