Strong distortion in transformation groups
We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boun...
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2018-02, Vol.50 (1), p.46-62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 1 |
container_start_page | 46 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 50 |
creator | Le Roux, Frédéric Mann, Kathryn |
description | We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff0r(M) satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book. |
doi_str_mv | 10.1112/blms.12108 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2738-9b125665427905e7b4a1fafee33913ce2aaf4532f4a049c18e40d577b0daee143</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEc3_oKuBzK-l4-mWeqgo1BxMboOaZsMlbYZkorMv9eZunZ14XLuhUPILcIKEdld3Q9phQyhPCMZikJThgzOSQbABC1A80tyldInAHJQmJHldoph3OVtl6YQpy6MeTfmU7Rj8iEO9tTsYvjap2ty4W2f3M1fLsjH0-P7-plWb5uX9X1FG6Z4SXWNTBaFFExpkE7VwqK33jnONfLGMWu9kJx5YUHoBksnoJVK1dBa51DwBVnOv00MKUXnzT52g40Hg2COluZoaU6WvzDO8HfXu8M_pHmoXrfz5gftIFSf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong distortion in transformation groups</title><source>Wiley Online Library All Journals</source><creator>Le Roux, Frédéric ; Mann, Kathryn</creator><creatorcontrib>Le Roux, Frédéric ; Mann, Kathryn</creatorcontrib><description>We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff0r(M) satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12108</identifier><language>eng</language><subject>20F05 (primary) ; 22F05 ; 37C05 ; 57S25</subject><ispartof>The Bulletin of the London Mathematical Society, 2018-02, Vol.50 (1), p.46-62</ispartof><rights>2017 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2738-9b125665427905e7b4a1fafee33913ce2aaf4532f4a049c18e40d577b0daee143</citedby><cites>FETCH-LOGICAL-c2738-9b125665427905e7b4a1fafee33913ce2aaf4532f4a049c18e40d577b0daee143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12108$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12108$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Le Roux, Frédéric</creatorcontrib><creatorcontrib>Mann, Kathryn</creatorcontrib><title>Strong distortion in transformation groups</title><title>The Bulletin of the London Mathematical Society</title><description>We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff0r(M) satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book.</description><subject>20F05 (primary)</subject><subject>22F05</subject><subject>37C05</subject><subject>57S25</subject><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEc3_oKuBzK-l4-mWeqgo1BxMboOaZsMlbYZkorMv9eZunZ14XLuhUPILcIKEdld3Q9phQyhPCMZikJThgzOSQbABC1A80tyldInAHJQmJHldoph3OVtl6YQpy6MeTfmU7Rj8iEO9tTsYvjap2ty4W2f3M1fLsjH0-P7-plWb5uX9X1FG6Z4SXWNTBaFFExpkE7VwqK33jnONfLGMWu9kJx5YUHoBksnoJVK1dBa51DwBVnOv00MKUXnzT52g40Hg2COluZoaU6WvzDO8HfXu8M_pHmoXrfz5gftIFSf</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Le Roux, Frédéric</creator><creator>Mann, Kathryn</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201802</creationdate><title>Strong distortion in transformation groups</title><author>Le Roux, Frédéric ; Mann, Kathryn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2738-9b125665427905e7b4a1fafee33913ce2aaf4532f4a049c18e40d577b0daee143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>20F05 (primary)</topic><topic>22F05</topic><topic>37C05</topic><topic>57S25</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Roux, Frédéric</creatorcontrib><creatorcontrib>Mann, Kathryn</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Roux, Frédéric</au><au>Mann, Kathryn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong distortion in transformation groups</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2018-02</date><risdate>2018</risdate><volume>50</volume><issue>1</issue><spage>46</spage><epage>62</epage><pages>46-62</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff0r(M) satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book.</abstract><doi>10.1112/blms.12108</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2018-02, Vol.50 (1), p.46-62 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_blms_12108 |
source | Wiley Online Library All Journals |
subjects | 20F05 (primary) 22F05 37C05 57S25 |
title | Strong distortion in transformation groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20distortion%20in%20transformation%20groups&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Le%20Roux,%20Fr%C3%A9d%C3%A9ric&rft.date=2018-02&rft.volume=50&rft.issue=1&rft.spage=46&rft.epage=62&rft.pages=46-62&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12108&rft_dat=%3Cwiley_cross%3EBLMS12108%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |