Strong distortion in transformation groups

We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2018-02, Vol.50 (1), p.46-62
Hauptverfasser: Le Roux, Frédéric, Mann, Kathryn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 46
container_title The Bulletin of the London Mathematical Society
container_volume 50
creator Le Roux, Frédéric
Mann, Kathryn
description We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff0r(M) satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book.
doi_str_mv 10.1112/blms.12108
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_blms_12108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BLMS12108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2738-9b125665427905e7b4a1fafee33913ce2aaf4532f4a049c18e40d577b0daee143</originalsourceid><addsrcrecordid>eNp9j01LxDAURYMoWEc3_oKuBzK-l4-mWeqgo1BxMboOaZsMlbYZkorMv9eZunZ14XLuhUPILcIKEdld3Q9phQyhPCMZikJThgzOSQbABC1A80tyldInAHJQmJHldoph3OVtl6YQpy6MeTfmU7Rj8iEO9tTsYvjap2ty4W2f3M1fLsjH0-P7-plWb5uX9X1FG6Z4SXWNTBaFFExpkE7VwqK33jnONfLGMWu9kJx5YUHoBksnoJVK1dBa51DwBVnOv00MKUXnzT52g40Hg2COluZoaU6WvzDO8HfXu8M_pHmoXrfz5gftIFSf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong distortion in transformation groups</title><source>Wiley Online Library All Journals</source><creator>Le Roux, Frédéric ; Mann, Kathryn</creator><creatorcontrib>Le Roux, Frédéric ; Mann, Kathryn</creatorcontrib><description>We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff0r(M) satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/blms.12108</identifier><language>eng</language><subject>20F05 (primary) ; 22F05 ; 37C05 ; 57S25</subject><ispartof>The Bulletin of the London Mathematical Society, 2018-02, Vol.50 (1), p.46-62</ispartof><rights>2017 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2738-9b125665427905e7b4a1fafee33913ce2aaf4532f4a049c18e40d577b0daee143</citedby><cites>FETCH-LOGICAL-c2738-9b125665427905e7b4a1fafee33913ce2aaf4532f4a049c18e40d577b0daee143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fblms.12108$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fblms.12108$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Le Roux, Frédéric</creatorcontrib><creatorcontrib>Mann, Kathryn</creatorcontrib><title>Strong distortion in transformation groups</title><title>The Bulletin of the London Mathematical Society</title><description>We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff0r(M) satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book.</description><subject>20F05 (primary)</subject><subject>22F05</subject><subject>37C05</subject><subject>57S25</subject><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j01LxDAURYMoWEc3_oKuBzK-l4-mWeqgo1BxMboOaZsMlbYZkorMv9eZunZ14XLuhUPILcIKEdld3Q9phQyhPCMZikJThgzOSQbABC1A80tyldInAHJQmJHldoph3OVtl6YQpy6MeTfmU7Rj8iEO9tTsYvjap2ty4W2f3M1fLsjH0-P7-plWb5uX9X1FG6Z4SXWNTBaFFExpkE7VwqK33jnONfLGMWu9kJx5YUHoBksnoJVK1dBa51DwBVnOv00MKUXnzT52g40Hg2COluZoaU6WvzDO8HfXu8M_pHmoXrfz5gftIFSf</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Le Roux, Frédéric</creator><creator>Mann, Kathryn</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201802</creationdate><title>Strong distortion in transformation groups</title><author>Le Roux, Frédéric ; Mann, Kathryn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2738-9b125665427905e7b4a1fafee33913ce2aaf4532f4a049c18e40d577b0daee143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>20F05 (primary)</topic><topic>22F05</topic><topic>37C05</topic><topic>57S25</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Roux, Frédéric</creatorcontrib><creatorcontrib>Mann, Kathryn</creatorcontrib><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Roux, Frédéric</au><au>Mann, Kathryn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong distortion in transformation groups</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><date>2018-02</date><risdate>2018</risdate><volume>50</volume><issue>1</issue><spage>46</spage><epage>62</epage><pages>46-62</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>We show that the groups Diff0r(Rn) and Diffr(Rn) have the strong distortion property, whenever 0⩽r⩽∞,r≠n+1. This implies in particular that every element in these groups is distorted, a property with dynamical implications. The result also gives new examples of groups with Bergman's strong boundedness property as in Bergman (Bull. Lond. Math. Soc. 38 (2006) 429–440). With related techniques we show that, for M a closed manifold or homeomorphic to the interior of a compact manifold with boundary, the diffeomorphism groups Diff0r(M) satisfy a relative Higman embedding type property, introduced by Schreier. In the simplest case, this answers a problem asked by Schreier in the famous Scottish Book.</abstract><doi>10.1112/blms.12108</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2018-02, Vol.50 (1), p.46-62
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_blms_12108
source Wiley Online Library All Journals
subjects 20F05 (primary)
22F05
37C05
57S25
title Strong distortion in transformation groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20distortion%20in%20transformation%20groups&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=Le%20Roux,%20Fr%C3%A9d%C3%A9ric&rft.date=2018-02&rft.volume=50&rft.issue=1&rft.spage=46&rft.epage=62&rft.pages=46-62&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/blms.12108&rft_dat=%3Cwiley_cross%3EBLMS12108%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true