ON IMPROVING ROTH’S THEOREM IN THE PRIMES

Let $A\subset \{1,\dots ,N\}$ be a set of prime numbers containing no non-trivial arithmetic progressions. Suppose that $A$ has relative density ${\it\alpha}=|A|/{\it\pi}(N)$, where ${\it\pi}(N)$ denotes the number of primes in the set $\{1,\dots ,N\}$. By modifying Helfgott and De Roton’s work [Imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2015-01, Vol.61 (1), p.49-62
1. Verfasser: Naslund, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 49
container_title Mathematika
container_volume 61
creator Naslund, Eric
description Let $A\subset \{1,\dots ,N\}$ be a set of prime numbers containing no non-trivial arithmetic progressions. Suppose that $A$ has relative density ${\it\alpha}=|A|/{\it\pi}(N)$, where ${\it\pi}(N)$ denotes the number of primes in the set $\{1,\dots ,N\}$. By modifying Helfgott and De Roton’s work [Improving Roth’s theorem in the primes. Int. Math. Res. Not. IMRN2011 (4) (2011), 767–783], we improve their bound and show that $$\begin{eqnarray}{\it\alpha}\ll \frac{(\log \log \log N)^{6}}{\log \log N}.\end{eqnarray}$$
doi_str_mv 10.1112/S0025579314000175
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0025579314000175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579314000175</cupid><sourcerecordid>10_1112_S0025579314000175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4625-3f457258447375e5f13729cff7a0321d08d771103784bcf49a948c3aee8998bd3</originalsourceid><addsrcrecordid>eNqFj81Kw0AUhQdRMFYfwF32Er13fjozSwmxCTZNSaLbkJ8ZSWmtJIh019fw9XwSE9qdoqt74fCdj0PINcItItK7DIAKITVDDgAoxQlxKHD0pOb0lDhj7I35Obno-xWAmCqODrlJFm4UL9PkOVrM3DTJw6_9Z-bmYZCkQexGi_F1l2kUB9klObPlujdXxzshTw9B7ofePJlF_v3cq_l0sDDLhaRCcS6ZFEZYZJLq2lpZAqPYgGqkRAQmFa9qy3WpuapZaYzSWlUNmxA89Nbdtu87Y4u3rt2U3a5AKMa1xY-1A-MfmI92bXb_A0WcP_7Wwo7mclN1bfNiitX2vXsd1v7h_gZ3w2N6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON IMPROVING ROTH’S THEOREM IN THE PRIMES</title><source>Access via Wiley Online Library</source><source>Cambridge University Press Journals Complete</source><creator>Naslund, Eric</creator><creatorcontrib>Naslund, Eric</creatorcontrib><description>Let $A\subset \{1,\dots ,N\}$ be a set of prime numbers containing no non-trivial arithmetic progressions. Suppose that $A$ has relative density ${\it\alpha}=|A|/{\it\pi}(N)$, where ${\it\pi}(N)$ denotes the number of primes in the set $\{1,\dots ,N\}$. By modifying Helfgott and De Roton’s work [Improving Roth’s theorem in the primes. Int. Math. Res. Not. IMRN2011 (4) (2011), 767–783], we improve their bound and show that $$\begin{eqnarray}{\it\alpha}\ll \frac{(\log \log \log N)^{6}}{\log \log N}.\end{eqnarray}$$</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579314000175</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>11B25 ; 11B30 (primary) ; 11N13 ; 11N36 ; 11P32</subject><ispartof>Mathematika, 2015-01, Vol.61 (1), p.49-62</ispartof><rights>Copyright © University College London 2014</rights><rights>2015 University College London</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4625-3f457258447375e5f13729cff7a0321d08d771103784bcf49a948c3aee8998bd3</citedby><cites>FETCH-LOGICAL-c4625-3f457258447375e5f13729cff7a0321d08d771103784bcf49a948c3aee8998bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579314000175$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0025579314000175/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,1417,27924,27925,45574,45575,55628</link.rule.ids></links><search><creatorcontrib>Naslund, Eric</creatorcontrib><title>ON IMPROVING ROTH’S THEOREM IN THE PRIMES</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>Let $A\subset \{1,\dots ,N\}$ be a set of prime numbers containing no non-trivial arithmetic progressions. Suppose that $A$ has relative density ${\it\alpha}=|A|/{\it\pi}(N)$, where ${\it\pi}(N)$ denotes the number of primes in the set $\{1,\dots ,N\}$. By modifying Helfgott and De Roton’s work [Improving Roth’s theorem in the primes. Int. Math. Res. Not. IMRN2011 (4) (2011), 767–783], we improve their bound and show that $$\begin{eqnarray}{\it\alpha}\ll \frac{(\log \log \log N)^{6}}{\log \log N}.\end{eqnarray}$$</description><subject>11B25</subject><subject>11B30 (primary)</subject><subject>11N13</subject><subject>11N36</subject><subject>11P32</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFj81Kw0AUhQdRMFYfwF32Er13fjozSwmxCTZNSaLbkJ8ZSWmtJIh019fw9XwSE9qdoqt74fCdj0PINcItItK7DIAKITVDDgAoxQlxKHD0pOb0lDhj7I35Obno-xWAmCqODrlJFm4UL9PkOVrM3DTJw6_9Z-bmYZCkQexGi_F1l2kUB9klObPlujdXxzshTw9B7ofePJlF_v3cq_l0sDDLhaRCcS6ZFEZYZJLq2lpZAqPYgGqkRAQmFa9qy3WpuapZaYzSWlUNmxA89Nbdtu87Y4u3rt2U3a5AKMa1xY-1A-MfmI92bXb_A0WcP_7Wwo7mclN1bfNiitX2vXsd1v7h_gZ3w2N6</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Naslund, Eric</creator><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201501</creationdate><title>ON IMPROVING ROTH’S THEOREM IN THE PRIMES</title><author>Naslund, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4625-3f457258447375e5f13729cff7a0321d08d771103784bcf49a948c3aee8998bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>11B25</topic><topic>11B30 (primary)</topic><topic>11N13</topic><topic>11N36</topic><topic>11P32</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naslund, Eric</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naslund, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON IMPROVING ROTH’S THEOREM IN THE PRIMES</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2015-01</date><risdate>2015</risdate><volume>61</volume><issue>1</issue><spage>49</spage><epage>62</epage><pages>49-62</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>Let $A\subset \{1,\dots ,N\}$ be a set of prime numbers containing no non-trivial arithmetic progressions. Suppose that $A$ has relative density ${\it\alpha}=|A|/{\it\pi}(N)$, where ${\it\pi}(N)$ denotes the number of primes in the set $\{1,\dots ,N\}$. By modifying Helfgott and De Roton’s work [Improving Roth’s theorem in the primes. Int. Math. Res. Not. IMRN2011 (4) (2011), 767–783], we improve their bound and show that $$\begin{eqnarray}{\it\alpha}\ll \frac{(\log \log \log N)^{6}}{\log \log N}.\end{eqnarray}$$</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579314000175</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2015-01, Vol.61 (1), p.49-62
issn 0025-5793
2041-7942
language eng
recordid cdi_crossref_primary_10_1112_S0025579314000175
source Access via Wiley Online Library; Cambridge University Press Journals Complete
subjects 11B25
11B30 (primary)
11N13
11N36
11P32
title ON IMPROVING ROTH’S THEOREM IN THE PRIMES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20IMPROVING%20ROTH%E2%80%99S%20THEOREM%20IN%20THE%20PRIMES&rft.jtitle=Mathematika&rft.au=Naslund,%20Eric&rft.date=2015-01&rft.volume=61&rft.issue=1&rft.spage=49&rft.epage=62&rft.pages=49-62&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S0025579314000175&rft_dat=%3Ccambridge_cross%3E10_1112_S0025579314000175%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579314000175&rfr_iscdi=true