ON A CONJECTURE OF ERDŐS

Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε>0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2012-07, Vol.58 (2), p.275-289
Hauptverfasser: Felix, Adam Tyler, Murty, M. Ram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 2
container_start_page 275
container_title Mathematika
container_volume 58
creator Felix, Adam Tyler
Murty, M. Ram
description Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε>0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p.
doi_str_mv 10.1112/S0025579311008205
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0025579311008205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579311008205</cupid><sourcerecordid>10_1112_S0025579311008205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-e8e0b5dbf07629518266ef9dc8dba03c28b145c7c9dbcf292442c6ef884b351b3</originalsourceid><addsrcrecordid>eNqFj0tOwzAURS0EEqGwgM6yAcN7_iT2sAopv9JIbTq2YsdBqVqKHCHUXbAp9kWidgaC0Rvcd-7VIWSMcI2I7GYJwKRMNUcEUAzkCYkYCKSpFuyURENMh_ycXHTdGkAmSmBExsU8nsRZMX_Ms3K1yONiGueL26_P5SU5a6pN56-Od0RW07zM7umsuHvIJjPqOKCkXnmwsrYNpAnTEhVLEt_o2qnaVsAdUxaFdKnTtXUN00wI5voPpYTlEi0fETz0urDruuAb8xbabRX2BsEMbuaHW89kB-aj3fj9_4B5Lp9-a-HH5WprQ1u_eLPevYfX3vaP7W-2hF7-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON A CONJECTURE OF ERDŐS</title><source>Access via Wiley Online Library</source><source>Cambridge University Press Journals Complete</source><creator>Felix, Adam Tyler ; Murty, M. Ram</creator><creatorcontrib>Felix, Adam Tyler ; Murty, M. Ram</creatorcontrib><description>Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε&gt;0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579311008205</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>11N13 ; 11N56 ; 11N64 (primary)</subject><ispartof>Mathematika, 2012-07, Vol.58 (2), p.275-289</ispartof><rights>Copyright © University College London 2012</rights><rights>2012 University College London</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3015-e8e0b5dbf07629518266ef9dc8dba03c28b145c7c9dbcf292442c6ef884b351b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579311008205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0025579311008205/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,1418,27928,27929,45578,45579,55632</link.rule.ids></links><search><creatorcontrib>Felix, Adam Tyler</creatorcontrib><creatorcontrib>Murty, M. Ram</creatorcontrib><title>ON A CONJECTURE OF ERDŐS</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε&gt;0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p.</description><subject>11N13</subject><subject>11N56</subject><subject>11N64 (primary)</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFj0tOwzAURS0EEqGwgM6yAcN7_iT2sAopv9JIbTq2YsdBqVqKHCHUXbAp9kWidgaC0Rvcd-7VIWSMcI2I7GYJwKRMNUcEUAzkCYkYCKSpFuyURENMh_ycXHTdGkAmSmBExsU8nsRZMX_Ms3K1yONiGueL26_P5SU5a6pN56-Od0RW07zM7umsuHvIJjPqOKCkXnmwsrYNpAnTEhVLEt_o2qnaVsAdUxaFdKnTtXUN00wI5voPpYTlEi0fETz0urDruuAb8xbabRX2BsEMbuaHW89kB-aj3fj9_4B5Lp9-a-HH5WprQ1u_eLPevYfX3vaP7W-2hF7-</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Felix, Adam Tyler</creator><creator>Murty, M. Ram</creator><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201207</creationdate><title>ON A CONJECTURE OF ERDŐS</title><author>Felix, Adam Tyler ; Murty, M. Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-e8e0b5dbf07629518266ef9dc8dba03c28b145c7c9dbcf292442c6ef884b351b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>11N13</topic><topic>11N56</topic><topic>11N64 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felix, Adam Tyler</creatorcontrib><creatorcontrib>Murty, M. Ram</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felix, Adam Tyler</au><au>Murty, M. Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A CONJECTURE OF ERDŐS</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2012-07</date><risdate>2012</risdate><volume>58</volume><issue>2</issue><spage>275</spage><epage>289</epage><pages>275-289</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε&gt;0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579311008205</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2012-07, Vol.58 (2), p.275-289
issn 0025-5793
2041-7942
language eng
recordid cdi_crossref_primary_10_1112_S0025579311008205
source Access via Wiley Online Library; Cambridge University Press Journals Complete
subjects 11N13
11N56
11N64 (primary)
title ON A CONJECTURE OF ERDŐS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20CONJECTURE%20OF%20ERD%C5%90S&rft.jtitle=Mathematika&rft.au=Felix,%20Adam%20Tyler&rft.date=2012-07&rft.volume=58&rft.issue=2&rft.spage=275&rft.epage=289&rft.pages=275-289&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S0025579311008205&rft_dat=%3Ccambridge_cross%3E10_1112_S0025579311008205%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579311008205&rfr_iscdi=true