ON A CONJECTURE OF ERDŐS
Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε>0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the ge...
Gespeichert in:
Veröffentlicht in: | Mathematika 2012-07, Vol.58 (2), p.275-289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 2 |
container_start_page | 275 |
container_title | Mathematika |
container_volume | 58 |
creator | Felix, Adam Tyler Murty, M. Ram |
description | Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε>0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p. |
doi_str_mv | 10.1112/S0025579311008205 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0025579311008205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579311008205</cupid><sourcerecordid>10_1112_S0025579311008205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-e8e0b5dbf07629518266ef9dc8dba03c28b145c7c9dbcf292442c6ef884b351b3</originalsourceid><addsrcrecordid>eNqFj0tOwzAURS0EEqGwgM6yAcN7_iT2sAopv9JIbTq2YsdBqVqKHCHUXbAp9kWidgaC0Rvcd-7VIWSMcI2I7GYJwKRMNUcEUAzkCYkYCKSpFuyURENMh_ycXHTdGkAmSmBExsU8nsRZMX_Ms3K1yONiGueL26_P5SU5a6pN56-Od0RW07zM7umsuHvIJjPqOKCkXnmwsrYNpAnTEhVLEt_o2qnaVsAdUxaFdKnTtXUN00wI5voPpYTlEi0fETz0urDruuAb8xbabRX2BsEMbuaHW89kB-aj3fj9_4B5Lp9-a-HH5WprQ1u_eLPevYfX3vaP7W-2hF7-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON A CONJECTURE OF ERDŐS</title><source>Access via Wiley Online Library</source><source>Cambridge University Press Journals Complete</source><creator>Felix, Adam Tyler ; Murty, M. Ram</creator><creatorcontrib>Felix, Adam Tyler ; Murty, M. Ram</creatorcontrib><description>Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε>0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579311008205</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>11N13 ; 11N56 ; 11N64 (primary)</subject><ispartof>Mathematika, 2012-07, Vol.58 (2), p.275-289</ispartof><rights>Copyright © University College London 2012</rights><rights>2012 University College London</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3015-e8e0b5dbf07629518266ef9dc8dba03c28b145c7c9dbcf292442c6ef884b351b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579311008205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0025579311008205/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,1418,27928,27929,45578,45579,55632</link.rule.ids></links><search><creatorcontrib>Felix, Adam Tyler</creatorcontrib><creatorcontrib>Murty, M. Ram</creatorcontrib><title>ON A CONJECTURE OF ERDŐS</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε>0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p.</description><subject>11N13</subject><subject>11N56</subject><subject>11N64 (primary)</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFj0tOwzAURS0EEqGwgM6yAcN7_iT2sAopv9JIbTq2YsdBqVqKHCHUXbAp9kWidgaC0Rvcd-7VIWSMcI2I7GYJwKRMNUcEUAzkCYkYCKSpFuyURENMh_ycXHTdGkAmSmBExsU8nsRZMX_Ms3K1yONiGueL26_P5SU5a6pN56-Od0RW07zM7umsuHvIJjPqOKCkXnmwsrYNpAnTEhVLEt_o2qnaVsAdUxaFdKnTtXUN00wI5voPpYTlEi0fETz0urDruuAb8xbabRX2BsEMbuaHW89kB-aj3fj9_4B5Lp9-a-HH5WprQ1u_eLPevYfX3vaP7W-2hF7-</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Felix, Adam Tyler</creator><creator>Murty, M. Ram</creator><general>London Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201207</creationdate><title>ON A CONJECTURE OF ERDŐS</title><author>Felix, Adam Tyler ; Murty, M. Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-e8e0b5dbf07629518266ef9dc8dba03c28b145c7c9dbcf292442c6ef884b351b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>11N13</topic><topic>11N56</topic><topic>11N64 (primary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Felix, Adam Tyler</creatorcontrib><creatorcontrib>Murty, M. Ram</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Felix, Adam Tyler</au><au>Murty, M. Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A CONJECTURE OF ERDŐS</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2012-07</date><risdate>2012</risdate><volume>58</volume><issue>2</issue><spage>275</spage><epage>289</epage><pages>275-289</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>Let a be an integer different from 0, ±1, or a perfect square. We consider a conjecture of Erdős which states that #{p:ℓa(p)=r}≪εrε for any ε>0, where ℓa(p) is the order of a modulo p. In particular, we see what this conjecture says about Artin’s primitive root conjecture and compare it to the generalized Riemann hypothesis and the ABC conjecture. We also extend work of Goldfeld related to divisors of p+a and the order of a modulo p.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579311008205</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5793 |
ispartof | Mathematika, 2012-07, Vol.58 (2), p.275-289 |
issn | 0025-5793 2041-7942 |
language | eng |
recordid | cdi_crossref_primary_10_1112_S0025579311008205 |
source | Access via Wiley Online Library; Cambridge University Press Journals Complete |
subjects | 11N13 11N56 11N64 (primary) |
title | ON A CONJECTURE OF ERDŐS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20CONJECTURE%20OF%20ERD%C5%90S&rft.jtitle=Mathematika&rft.au=Felix,%20Adam%20Tyler&rft.date=2012-07&rft.volume=58&rft.issue=2&rft.spage=275&rft.epage=289&rft.pages=275-289&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S0025579311008205&rft_dat=%3Ccambridge_cross%3E10_1112_S0025579311008205%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579311008205&rfr_iscdi=true |