The order of inverses mod q

Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2000-12, Vol.47 (1-2), p.87-108
Hauptverfasser: Cobeli, Cristian, Zaharescu, Alexandru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 1-2
container_start_page 87
container_title Mathematika
container_volume 47
creator Cobeli, Cristian
Zaharescu, Alexandru
description Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated.
doi_str_mv 10.1112/S0025579300015746
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0025579300015746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579300015746</cupid><sourcerecordid>10_1112_S0025579300015746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4156-7ca40fbcdd956ff4a3f321becdb6bad5f6d514e2aa2e08d60fcfd7dba96d67403</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRVcIJELgAxCNG0rD7NsuIUBACUIWRqJbrfcBDkkcdnnl73HkCAoQVFPMvWd0BqF9DEcYY3J8C0A4lzkFAMwlExuoR4DhVOaMbKLeap2u9ttoJ8YJABcZwz10UD66pAnWhaTxST1_cyG6mMwamzzvoi2vp9HtrWcf3V2cl4PLdHwzvBqcjFPDMBepNJqBr4y1ORfeM009Jbhyxlai0pZ7YTlmjmhNHGRWgDfeSlvpXFghGdA-wh3XhCbG4LxahHqmw1JhUCs79cOu7Rx2nYWORk990HNTx-8ilRlnedbmBl3uvZ665f9gdV2OfruWdpQ6vriPL4oOT0pIKrkSw0Jl5Ky4H2WnqmjzdG2kZ1Wo7YNTk-Y1zNsv_uH0CQT9fq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The order of inverses mod q</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cobeli, Cristian ; Zaharescu, Alexandru</creator><creatorcontrib>Cobeli, Cristian ; Zaharescu, Alexandru</creatorcontrib><description>Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579300015746</identifier><identifier>CODEN: MTKAAB</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>11N69 ; 11N69: NUMBER THEORY ; Algebra ; Distribution of integers in special residue classes ; Exact sciences and technology ; Mathematics ; Multiplicative number theory ; NUMBER THEORY ; Sciences and techniques of general use</subject><ispartof>Mathematika, 2000-12, Vol.47 (1-2), p.87-108</ispartof><rights>Copyright © University College London 2000</rights><rights>2000 University College London</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4156-7ca40fbcdd956ff4a3f321becdb6bad5f6d514e2aa2e08d60fcfd7dba96d67403</citedby><cites>FETCH-LOGICAL-c4156-7ca40fbcdd956ff4a3f321becdb6bad5f6d514e2aa2e08d60fcfd7dba96d67403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579300015746$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0025579300015746$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13785498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cobeli, Cristian</creatorcontrib><creatorcontrib>Zaharescu, Alexandru</creatorcontrib><title>The order of inverses mod q</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated.</description><subject>11N69</subject><subject>11N69: NUMBER THEORY</subject><subject>Algebra</subject><subject>Distribution of integers in special residue classes</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Multiplicative number theory</subject><subject>NUMBER THEORY</subject><subject>Sciences and techniques of general use</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOw0AQRVcIJELgAxCNG0rD7NsuIUBACUIWRqJbrfcBDkkcdnnl73HkCAoQVFPMvWd0BqF9DEcYY3J8C0A4lzkFAMwlExuoR4DhVOaMbKLeap2u9ttoJ8YJABcZwz10UD66pAnWhaTxST1_cyG6mMwamzzvoi2vp9HtrWcf3V2cl4PLdHwzvBqcjFPDMBepNJqBr4y1ORfeM009Jbhyxlai0pZ7YTlmjmhNHGRWgDfeSlvpXFghGdA-wh3XhCbG4LxahHqmw1JhUCs79cOu7Rx2nYWORk990HNTx-8ilRlnedbmBl3uvZ665f9gdV2OfruWdpQ6vriPL4oOT0pIKrkSw0Jl5Ky4H2WnqmjzdG2kZ1Wo7YNTk-Y1zNsv_uH0CQT9fq0</recordid><startdate>200012</startdate><enddate>200012</enddate><creator>Cobeli, Cristian</creator><creator>Zaharescu, Alexandru</creator><general>London Mathematical Society</general><general>University College, Department of Mathematics</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200012</creationdate><title>The order of inverses mod q</title><author>Cobeli, Cristian ; Zaharescu, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4156-7ca40fbcdd956ff4a3f321becdb6bad5f6d514e2aa2e08d60fcfd7dba96d67403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>11N69</topic><topic>11N69: NUMBER THEORY</topic><topic>Algebra</topic><topic>Distribution of integers in special residue classes</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Multiplicative number theory</topic><topic>NUMBER THEORY</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobeli, Cristian</creatorcontrib><creatorcontrib>Zaharescu, Alexandru</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobeli, Cristian</au><au>Zaharescu, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The order of inverses mod q</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2000-12</date><risdate>2000</risdate><volume>47</volume><issue>1-2</issue><spage>87</spage><epage>108</epage><pages>87-108</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><coden>MTKAAB</coden><abstract>Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579300015746</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2000-12, Vol.47 (1-2), p.87-108
issn 0025-5793
2041-7942
language eng
recordid cdi_crossref_primary_10_1112_S0025579300015746
source Wiley Online Library Journals Frontfile Complete
subjects 11N69
11N69: NUMBER THEORY
Algebra
Distribution of integers in special residue classes
Exact sciences and technology
Mathematics
Multiplicative number theory
NUMBER THEORY
Sciences and techniques of general use
title The order of inverses mod q
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20order%20of%20inverses%20mod%20q&rft.jtitle=Mathematika&rft.au=Cobeli,%20Cristian&rft.date=2000-12&rft.volume=47&rft.issue=1-2&rft.spage=87&rft.epage=108&rft.pages=87-108&rft.issn=0025-5793&rft.eissn=2041-7942&rft.coden=MTKAAB&rft_id=info:doi/10.1112/S0025579300015746&rft_dat=%3Ccambridge_cross%3E10_1112_S0025579300015746%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579300015746&rfr_iscdi=true