The order of inverses mod q
Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime a...
Gespeichert in:
Veröffentlicht in: | Mathematika 2000-12, Vol.47 (1-2), p.87-108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1-2 |
container_start_page | 87 |
container_title | Mathematika |
container_volume | 47 |
creator | Cobeli, Cristian Zaharescu, Alexandru |
description | Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated. |
doi_str_mv | 10.1112/S0025579300015746 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0025579300015746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579300015746</cupid><sourcerecordid>10_1112_S0025579300015746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4156-7ca40fbcdd956ff4a3f321becdb6bad5f6d514e2aa2e08d60fcfd7dba96d67403</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRVcIJELgAxCNG0rD7NsuIUBACUIWRqJbrfcBDkkcdnnl73HkCAoQVFPMvWd0BqF9DEcYY3J8C0A4lzkFAMwlExuoR4DhVOaMbKLeap2u9ttoJ8YJABcZwz10UD66pAnWhaTxST1_cyG6mMwamzzvoi2vp9HtrWcf3V2cl4PLdHwzvBqcjFPDMBepNJqBr4y1ORfeM009Jbhyxlai0pZ7YTlmjmhNHGRWgDfeSlvpXFghGdA-wh3XhCbG4LxahHqmw1JhUCs79cOu7Rx2nYWORk990HNTx-8ilRlnedbmBl3uvZ665f9gdV2OfruWdpQ6vriPL4oOT0pIKrkSw0Jl5Ky4H2WnqmjzdG2kZ1Wo7YNTk-Y1zNsv_uH0CQT9fq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The order of inverses mod q</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cobeli, Cristian ; Zaharescu, Alexandru</creator><creatorcontrib>Cobeli, Cristian ; Zaharescu, Alexandru</creatorcontrib><description>Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579300015746</identifier><identifier>CODEN: MTKAAB</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>11N69 ; 11N69: NUMBER THEORY ; Algebra ; Distribution of integers in special residue classes ; Exact sciences and technology ; Mathematics ; Multiplicative number theory ; NUMBER THEORY ; Sciences and techniques of general use</subject><ispartof>Mathematika, 2000-12, Vol.47 (1-2), p.87-108</ispartof><rights>Copyright © University College London 2000</rights><rights>2000 University College London</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4156-7ca40fbcdd956ff4a3f321becdb6bad5f6d514e2aa2e08d60fcfd7dba96d67403</citedby><cites>FETCH-LOGICAL-c4156-7ca40fbcdd956ff4a3f321becdb6bad5f6d514e2aa2e08d60fcfd7dba96d67403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579300015746$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0025579300015746$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13785498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cobeli, Cristian</creatorcontrib><creatorcontrib>Zaharescu, Alexandru</creatorcontrib><title>The order of inverses mod q</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated.</description><subject>11N69</subject><subject>11N69: NUMBER THEORY</subject><subject>Algebra</subject><subject>Distribution of integers in special residue classes</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Multiplicative number theory</subject><subject>NUMBER THEORY</subject><subject>Sciences and techniques of general use</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOw0AQRVcIJELgAxCNG0rD7NsuIUBACUIWRqJbrfcBDkkcdnnl73HkCAoQVFPMvWd0BqF9DEcYY3J8C0A4lzkFAMwlExuoR4DhVOaMbKLeap2u9ttoJ8YJABcZwz10UD66pAnWhaTxST1_cyG6mMwamzzvoi2vp9HtrWcf3V2cl4PLdHwzvBqcjFPDMBepNJqBr4y1ORfeM009Jbhyxlai0pZ7YTlmjmhNHGRWgDfeSlvpXFghGdA-wh3XhCbG4LxahHqmw1JhUCs79cOu7Rx2nYWORk990HNTx-8ilRlnedbmBl3uvZ665f9gdV2OfruWdpQ6vriPL4oOT0pIKrkSw0Jl5Ky4H2WnqmjzdG2kZ1Wo7YNTk-Y1zNsv_uH0CQT9fq0</recordid><startdate>200012</startdate><enddate>200012</enddate><creator>Cobeli, Cristian</creator><creator>Zaharescu, Alexandru</creator><general>London Mathematical Society</general><general>University College, Department of Mathematics</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200012</creationdate><title>The order of inverses mod q</title><author>Cobeli, Cristian ; Zaharescu, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4156-7ca40fbcdd956ff4a3f321becdb6bad5f6d514e2aa2e08d60fcfd7dba96d67403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>11N69</topic><topic>11N69: NUMBER THEORY</topic><topic>Algebra</topic><topic>Distribution of integers in special residue classes</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Multiplicative number theory</topic><topic>NUMBER THEORY</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cobeli, Cristian</creatorcontrib><creatorcontrib>Zaharescu, Alexandru</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobeli, Cristian</au><au>Zaharescu, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The order of inverses mod q</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2000-12</date><risdate>2000</risdate><volume>47</volume><issue>1-2</issue><spage>87</spage><epage>108</epage><pages>87-108</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><coden>MTKAAB</coden><abstract>Let q be a prime number and let a = (a1, …, as) be an s-tuple of distinct integers modulo q. For any x coprime with q, let be such that . For fixed s and q→∞ an asymptotic formula is given for the number of residue classes x modulo q for which The more general case, when q is not necessarily prime and x is restricted to lie in a given subinterval of [1, q], is also treated.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579300015746</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5793 |
ispartof | Mathematika, 2000-12, Vol.47 (1-2), p.87-108 |
issn | 0025-5793 2041-7942 |
language | eng |
recordid | cdi_crossref_primary_10_1112_S0025579300015746 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 11N69 11N69: NUMBER THEORY Algebra Distribution of integers in special residue classes Exact sciences and technology Mathematics Multiplicative number theory NUMBER THEORY Sciences and techniques of general use |
title | The order of inverses mod q |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20order%20of%20inverses%20mod%20q&rft.jtitle=Mathematika&rft.au=Cobeli,%20Cristian&rft.date=2000-12&rft.volume=47&rft.issue=1-2&rft.spage=87&rft.epage=108&rft.pages=87-108&rft.issn=0025-5793&rft.eissn=2041-7942&rft.coden=MTKAAB&rft_id=info:doi/10.1112/S0025579300015746&rft_dat=%3Ccambridge_cross%3E10_1112_S0025579300015746%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579300015746&rfr_iscdi=true |